Week of Sept. 28, 2009/US\$10.00

Search Issue | Next Page

Trends In Unconventional Gas

Efficiency updates cut GHG emissions, help profits Discovery off Sierra Leone may set up 700-mile play La. refinery converts control system without shutdown Effective defense requires thorough risk assessment

We've tamed some very scary energy problems.

Science Applications International Corporation takes a holistic enterprise approach to solving energy management problems, no matter how monstrous. From concept to architecture, building, and financing, we have more than 30 years of experience helping companies use a lot less energy and save a lot more money. Smart people solving hard problems.

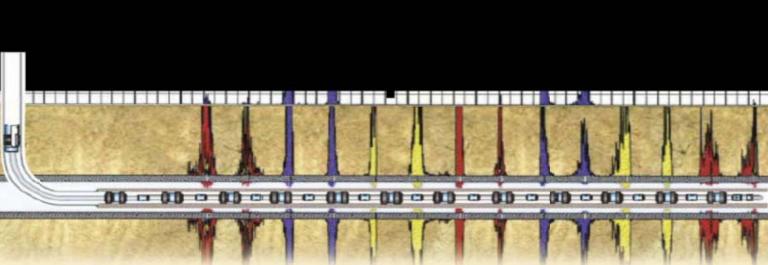
For detailed information, visit www.saic.com/monster

Energy | Environment | National Security | Health | Critical Infrastructure

NYSE:SAI

CGAS IOURNA

Sept 28, 2009 Volume 107.36


39

50

Trends in Unconventional Gas

GAS SHALE—1: Seven plays of	Iominate North America activity
Scott Stevens Vello Kuuskraa	

Understanding process key to shale gas development Mark Parker

REGULAR FEATURES

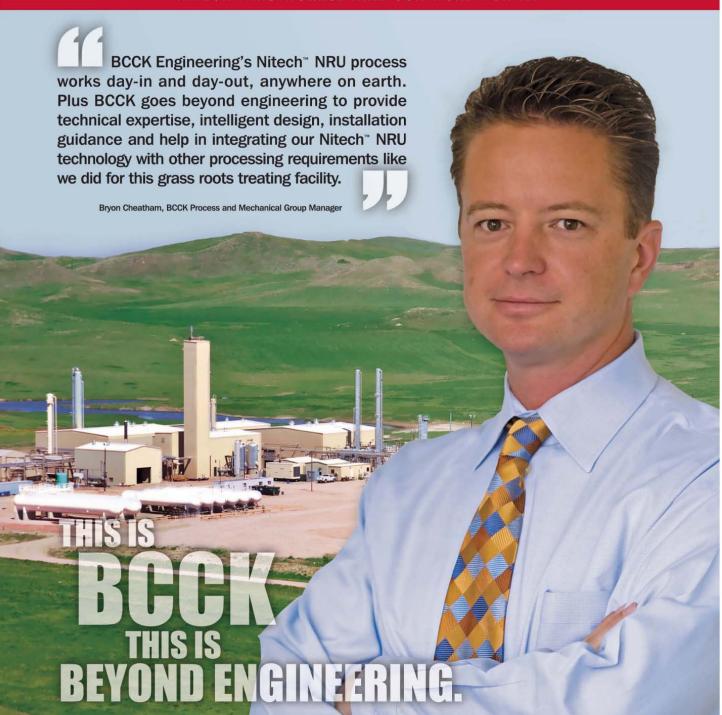
Newsletter 5
Calendar
Journally Speaking16
Editorial 18
Area Drilling
Equipment/Software/Literature 72
Services/Suppliers72
Statistics74
Classifieds
Advertisers' Index79
Editor's Perspective/Market Journal 80

Cover

The hydraulic fracturing equipment is on the Nadel & Gussman-Jetta Operating Co.'s Franks 17 No. 2 well that is completed in the Haynesville shale, north of Shreveport, La. Hydraulic fracturing is one of the technologies that has allowed for the economic exploitation of the vast gas resources contained in shales, as discussed in two articles in OGJ's special report on trends in unconventional gas, starting on p. 39. Photo from Halliburton.

Online

The full text of Oil & Gas Journal is available through OGJ Online, Oil & Gas Journal's internet-based energy information service, at http://www.ogjonline.com. For information, send an e-mail message to webmaster@ogjonline.com.


Oil & Gas Journal / Sept. 28, 2009

NITECH™ NRU WORKS. TAKE OUR WORD FOR IT.

GAS TREATING AND PROCESSING DESIGN. SOLUTIONS. NITROGEN, HELIUM, CO2 TECHNOLOGY. BEYOND ENGINEERING.

In 2005, Hiland Energy Partners chose BCCK for design and installation of their Badlands Gas Plant in North Dakota. Hiland chose the patented Nitech™ NRU to reduce increasing volumes of nitrogen in their fire flood project from as high as 80% to a target of 10%. BCCK's

solution included integrated NGL extraction with the Nitech™ NRU process, CO2 extraction, and liquid product fractionation. As a result, Hiland was able to sell multiple NGL product streams including propane. Since August 2007, this Nitech™ NRU has operated in extreme climates and has enabled Hiland to generate saleable gas, fuel gas, and liquids from a previously unmarketable resource. See more successes at bcck.com.

2500 North Big Spring, Suite 230 • Midland, Texas 79705 • 432.685.6095 • 888-518-6459 • www.bcck.com

GENERAL INTEREST

Editorial: Dissent is just dissent	18
Efficiency improvements cut GHG emissions, help profits Rick Beaubien	20
Salazar to end federal oil and gas RIK program Nick Snow	25
Extended OCS comment period produces 350,000 comments Nick Snow	27
WATCHING GOVERNMENT: Delivering 'human impact statements'	28
Tighter OTC derivative oversight needed, House panel told Nick Snow	30
House panel told leasing bill would hurt development Nick Snow	32
Indonesia awards exploration rights for blocks Eric Watkins	33
Gazprom launches new stretch of Kaliningrad gas line EricWatkins	34

EXPLORATION & DEVELOPMENT

Discovery off Sierra Leone may set up 700-mile play	36
Alan Petzet	
Liberia to gather ultradeepwater seismic	37
Rensol YPF confirms large gas find off Venezuela	38

Drilling & Production

Special Report:	GAS SHALE—1: Seven plays dominate North America activity	39
Scott Stevens, Vello Kı		
Special Report:	Understanding process key to shale gas development	50
Mark Parker	, , ,	

Processing

La. refinery converts control system without shutdown	56
Ryan M. Schulz, Adam R. Joiner	

TRANSPORTATION

CYBER SECURITY—1: Effective defense requires thorough risk assessment	62
Tim Shaw	

Copyright 2009 by PennWell Corporation (Registered in U.S. Patent & Trademark Office). All rights reserved. Oil & Gas Journal or any part thereof may not be reproduced, stored in a retrieval system, or transcribed in any form or by any means, electronic or mechanical, including photocopying and recording, without the prior written permission of the Editor. Permission, however, is granted for employees of corporations licensed under the Annual Authorization Service offered by the Copyright Clearance Center Inc. (CCC), 222 Rosewood Drive, Danvers, Mass. 01923, or by calling CCC's Customer Relations Department at 978-750-8400 prior to copyring. Requests for bulk orders should be addressed to the Editor. Oil & Gas Journal (ISSN 0030-1338) is published 47 times per year by PennWell Corporation, 1421 S. Sheridan Rd., Tulsa, Okla., Box 1260, 74101. Periodicals postage paid at Tulsa, Okla., and at additional mailing offices. Oil & Gas Journal and OGJ are registered trademarks of PennWell Corporation. POSTMASTER: send address changes, letters about subscription service, or subscription orders to P.O. Box 3497, Northbrook, IL 60065, or telephone (800) 633-1656. Change of address notices should be sent promptly with old as well as new address and with ZIP code or postal zone. Allow 30 days for change of address. Oil & Gas Journal is available for electronic retrieval on Oil & Gas Journal Online (www.ogjonline.com) or the NEXIS® Service, Box 933, Dayton, Ohio 45401, (937) 865-6800. SUBSCRIPTION RATES in the US: 1 yr. \$89; Latin America and Canada: 1 yr. \$94; Russia and republics of the former USSR, 1 yr. 2,200 rubles; all other countries: 1 yr. \$129, 1 yr. premium digital \$59 worldwide. These rates apply only to individuals holding responsible positions in the petroleum industry. Single copies are \$10 each except for 100th Anniversary issue which is \$20. Publisher reserves the right to refuse non-qualified subscriptions. Oil & Gas Journal is available on the Internet at http://www.ogjonli

Oil & Gas Journal / Sept. 28, 2009

PennWell, Houston office

1455 West Loop South, Suite 400, Houston, TX 77027 Telephone 713.621.9720/Fax 713.963.6285/Web site www.ogjonline.com

Editor Bob Tippee, bobt@ogjonline.com Chief Editor-Exploration Alan Petzet, alanp@ogjonline.com Chief Technology Editor-LNG/Gas Processing

Warren R. True, warrent@ogjonline.com

Production Editor Guntis Moritis, guntism@ogjonline.com

Pipeline Editor Christopher E. Smith, chriss@ogjonline.com

Senior Editor-Economics Marilyn Radler, marilynr@ogjonline.com

Senior Editor Steven Poruban, stevenp@ogjonline.com

Senior Writer Sam Fletcher, samf@ogjonline.com

Senior Staff Writer Paula Dittrick, paulad@ogjonline.com

Survey Editor/NewsWriter Leena Koottungal, lkoottungal@ogjonline.com

Editorial Assistant Linda Barzar, Ibarzar@pennwell.com

Vice-President/Group Publishing Director
Paul Westervelt, pwestervelt@pennwell.com
Vice-President/Custom Publishing Roy Markum, roym@pennwell.com

PennWell, Tulsa office

1421 S. Sheridan Rd., Tulsa, OK 74112
PO Box 1260, Tulsa, OK 74101
Telephone 918.835.3161 / Fax 918.832.9290
Presentation/Equipment Editor Jim Stilwell, jims@pennwell.com
Associate Presentation Editor Michelle Gourd, michelleg@pennwell.com
Statistics Editor Laura Bell, laurab@ogjonline.com
Illustrators Mike Reeder, Kay Wayne
Editorial Assistant Donna Barnett, donnab@ogjonline.com
Production Director Charlie Cole

London

 $\label{eq:continuity} \begin{tabular}{ll} Tel + 44~(0) & 20.8884.4246 \\ \hline \textbf{International Editor Uchenna Izundu, uchennai@pennwell.com} \end{tabular}$

Washington

Tel 703.533.1552

Washington Editor Nick Snow, nicks@pennwell.com

Los Angeles

Tel 310.595.5657

Oil Diplomacy Editor Eric Watkins, hippalus@yahoo.com

OGJ News

Please submit press releases via e-mail to: news@ogjonline.com

Subscriber Service

P.O. Box 2002, Tulsa OK 74101
Tel 1.800.633.1656 / 918.831.9423 / Fax 918.831.9482
E-mail ogjsub@pennwell.com
Circulation Manager Tommie Grigg, tommieg@pennwell.com

PennWell Corporate Headquarters

1421 S. Sheridan Rd., Tulsa, OK 74112

P.C. Lauinger, 1900-1988

Chairman Frank T. Lauinger

President/Chief Executive Officer Robert F. Biolchini

Member Audit Bureau of Circulations & American Business Media

DRILLING

SOLUTIONS

Integrated Borehole Strengthening Solutions*

Now you can build wellbore integrity while you drill with the I-BOSS suite of solutions.

You no longer need to hold up drilling operations in unconsolidated formations while you tackle lost circulation, stuck pipe or other wellbore instability issues. Now you can avoid costly NPT, casing and cementing by dealing with the problems as you drill.

STRENGTHENING WHILE DRILLING is a completely new approach from M-I SWACO that targets the propagation of induced fractures before and while they occur. It has been made possible by a unique combination of technology, techniques, experience and expertise, innovatively applied to create the I-BOSS suite of solutions.

This proactive and field-proven approach helps to keep your drilling progress and budgets on track. It also means that many previously inaccessible or uneconomical reservoirs — especially deepwater projects — are now viable. So you can open up more possibilities, as well as strengthening your drilling performance and efficiency.

Only the I-BOSS suite of solutions provides you with STRENGTHENING WHILE DRILLING.


Drilling Solutions Wellbore Productivity Production Technologies Environmental Solutions

Customer-focused, solutions-driven

www.miswaco.com

*Mark of M-I LLC

Newsletter

Sept. 28, 2009

International news for oil and gas professionals
For up-to-the-minute news, visit www.ogjonline.com

General Interest — Quick Takes

IHS Herold: Hofmeister wants independent agency

John Hofmeister, former president of Shell Oil Co., wants the US to come up with a comprehensive approach to energy and the environment rather than using one that's politically driven.

Speaking on Sept. 22 at the IHS Herold Pacesetters Energy Conference in Greenwich, Conn., Hofmeister called for the implementation of an independent regulatory agency for energy policy. He envisions something similar to what the Federal Reserve has been for banking.

He suggests a federal energy resources board that would have its own rules, its own funding, and an appointment process independent of election cycles.

"If we fail to take the politics out of energy, we are going to zig-zag our way into the future," Hofmeister said. "Energy is too important to leave to everyday politics."

He noted that eight presidents and 18 Congresses have promoted US energy independence while oil imports have continued to grow in the last 35 years.

"We have yet to get a grip on what it means to be a modern country regarding energy and environment," he said.

Currently, Hofmeister is founder and chief executive officer of Citizens for Affordable Energy, a grassroots organization seeking to educate the public about energy.

IHS Herold: Markets to have 'moderate' recovery

Prices for light, sweet crude are expected to average \$67/bbl during 2010, a spokesman said Sept. 22 at the Pacesetters Energy Conference.

Oil prices dropped to about \$35/bbl during February and have since rebounded with reports of improving global economic growth. Jim Burkhard, managing director of the IHS CERA's (Cambridge Energy Research Associates) Global Oil Group, believes that oil demand in the Organization for Economic Cooperation and Development nations likely peaked in 2005.

"We're not going to get back to that (oil) demand level again," Burkhard said, which means potentially less upward pressure on oil prices, primarily because oil demand in OECD nations continues to shrink.

The reasons behind lower oil demand include rising fuel economy standards in many countries and the penetration of alternative fuels, Burkhard said.

Sara Johnson, IHS Global Insight managing director of global macroeconomics, said the US real gross domestic product is beginning to recover, but she expects unemployment rates will continue to rise going into next year.

"Beware of early 2010," Johnson said, adding that she expects to see the start of job creation toward the end of the first quarter

and beginning of the second quarter. "Don't expect a strong 'V-shape' recovery in the US."

The US dollar will depreciate and demonstrate more weakness through 2012, she said.

IHS Herold: Global reserves fall in 2008

Oil and gas companies' 2008 global investment for exploration and development projects totaled \$492 billion—a 21% increase from 2007—yet oil and gas reserves fell, according to a report from IHS Herold Inc. and Harrison Lovegrove & Co. Ltd.

In the latest annual upstream performance review, the two companies reported that high oil prices during most of 2008 helped industry to generate record cash flow of \$590 billion, up 36% from 2007. Report highlights were discussed Sept. 23 during the Pacesetters Energy Conference.

Industry's 2008 cash flow exceeded capital spending by \$100 billion. Cash flow per boe increased 35% from 2007 to \$29.66/boe. Last year marked the second consecutive year cash flow exceeded investment, the report said.

The 2009 Global Upstream Performance Review is an annual analysis of 232 oil and gas companies based on reports filed with the US Securities and Exchange Commission and other similar agencies worldwide.

"It is a very capital-intensive job to maintain reserves," said Nicholas Cacchione, IHS Herold senior vice-president and codirector of equity research. He expects reserves probably will drop in 2009 unless finding and development costs see a dramatic decline.

In 2008, world oil reserves declined nearly 3%, primarily due to a 5.2 billion bbl decline in revisions that stemmed from reduced commodity prices. Natural gas reserves grew by 3%, the same as the past 5 years. Gas production accelerated nearly 5% to 44.2 tcf.

Reserve replacement costs surged to \$23.44/boe, up 70%, while finding and development costs rose 66% to \$25.50/boe, due to a sharp drop in positive reserve revisions. Reserve additions, both from all sources and via the drillbit, were down over 20%.

During 2008, worldwide oil and gas revenues were \$1.2 trillion, but net income was constrained by rapidly rising depreciation charges. Net income for 2008 was just under \$310 billion.

Spending for proved reserves dropped 30% to \$44 billion as merger and acquisition activity collapsed during the last 5 months of 2008, particularly in the US and Canada. Competition for unconventional resources was up sharply, led by US gas shale plays. Global spending for unproved reserves more than doubled from 2007 to \$62 billion. ◆

Oil & Gas Journal 5

d u S t

IPE BRENT / NYMEX LIGHT SWEET CRUDE

WTI CUSHING / BRENT SPOT

NYMEX NATURAL GAS / SPOT GAS - HENRY HUB

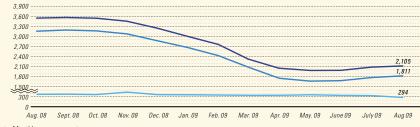
IPE GAS OIL / NYMEX HEATING OIL

PROPANE - MT. BELVIEU / BUTANE - MT. BELVIEU

NYMEX GASOLINE (RBOB)² / NY SPOT GASOLINE³

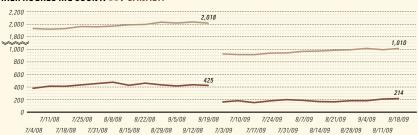
¹Not available ²Reformulated gasoline blendstock for oxygen blending. ³Nonoxygenated regular unleaded.

S С O d е


US INDUSTRY SCOREBOARD — 9/28

Latest week 9/11 Demand, 1,000 b/d	4 wk. average	4 wk. avg. year ago¹	Change, %	YTD average ¹	YTD avg. year ago¹	Change, %
Motor gasoline Distillate Jet fuel Residual Other products TOTAL DEMAND Supply, 1,000 b/d	9,217 3,437 1,486 558 4,755 19,453	8,907 3,688 1,582 514 4,069 18,760	3.5 -6.8 -6.1 8.6 16.9 3.7	9,008 3,605 1,397 578 4,202 18,790	9,041 3,961 1,587 629 4,482 19,700	-0.4 -9.0 -12.0 -8.1 -6.2 -4.6
Crude production NGL production ² Crude imports Product imports Other supply ³ TOTAL SUPPLY Refining, 1,000 b/d	5,247 2,188 9,200 2,430 1,696 20,761	4,550 2,084 9,654 2,908 1,542 20,738	15.3 5.0 -4.7 -16.4 10.0 0.1	5,225 2,006 9,255 2,760 1,717 20,963	5,044 2,140 9,849 3,151 1,546 21,730	3.6 -6.3 -6.0 -12.4 11.1 -3.5
Crude runs to stills Input to crude stills % utilization	14,501 14,860 84.2	14,088 14,477 82.2	2.9 2.6 —	14,501 14,860 84.2	14,697 15,038 85.4	-1.3 -1.2

Latest week 9/11 Stocks, 1,000 bbl	Latest week	Previous week¹	Change	Same week year ago¹	Change	Change, %
Crude oil Motor gasoline Distillate Jet fuel-kerosine Residual	332,753 207,700 167,793 45,152 33,902	337,482 207,153 165,556 45,341 33,583	-4,729 547 2,237 -189 319	291,706 184,634 129,625 39,084 35,980	41,047 23,066 38,168 6,068 -2,078	14.1 12.5 29.4 15.5 –5.8
Stock cover (days) ⁴			Change, ⁹	%	Change,	%
Crude Motor gasoline Distillate Propane	22.3 22.5 48.8 64.4	22.9 22.4 47.8 65.8	-2.6 0.4 2.1 -2.1	20.4 20.1 32.1 56.8	9.3 11.9 52.0 13.4	
Futures prices ⁵ 9/18			Change		Change	%
Light sweet crude (\$/bbl) Natural gas, \$/MMbtu	71.36 3.52	70.91 2.96	0.45 0.56	102.85 7.41	-31.49 -3.89	-30.6 -52.5

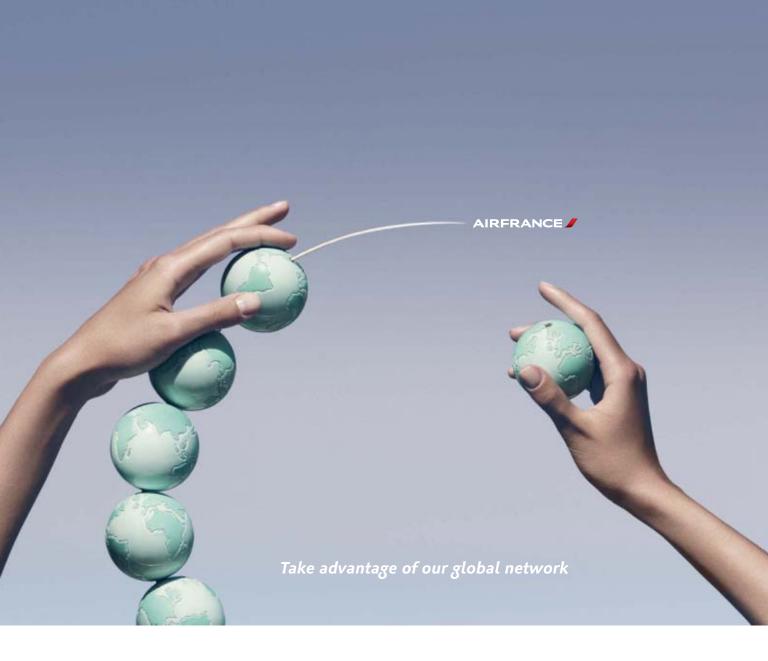

Based on revised figures. Includes adjustments for fuel ethanol and motor gasoline blending components. Includes other hydrocarbons and alcohol, refinery processing gain, and unaccounted for crude oil. *Stocks divided by average daily product supplied for the prior 4 weeks. *Weekly average of daily closing futures prices. Sources: Energy Information Administration, Wall Street Journal

BAKER HUGHES INTERNATIONAL RIG COUNT: TOTAL WORLD / TOTAL ONSHORE / TOTAL OFFSHORE

Note: Monthly average count

BAKER HUGHES RIG COUNT: US / CANADA

Note: End of week average count


Oil & Gas Journal / Sept. 28, 2009

TRIPLE MILES FROM HOUSTON AND NEWARK EARN FREE DOMESTIC OR INTERNATIONAL TICKETS OR UPGRADES THREE TIMES FASTER

Fly on Air France in any class of service between September 15 and November 30, 2009, from Houston or Newark to Paris and receive triple Flying Blue frequent flyer Miles.*

Or fly from Houston or Newark via our Paris-Charles de Gaulle hub and connect within 24 hours to Malabo, Luanda, Lagos, Cairo, Mumbai, Delhi or Bangalore and enjoy the same great triple Miles offer.*

If you're not already a Flying Blue member, receive 1,000 bonus Miles when you enroll between September 15 and November 30, 2009, and fly Air France within six months of signing up.*

To book your next trip, or to find out more about these special offers, visit airfrance.com/us, call 1-800-237-2747 or contact your travel professional.

airfrance.com/us

Offers valid one way or round trip on Air France coded and operated flights only. Offers apply to U.S. resident Flying Blue members only, and travel must originate in the U.S. Unlimited mileage accrual during promotional period. Triple Miles are calculated on base Miles Flown and class bonus. Other conditions may apply. ©2009 Air France

AIRFRANCE KLM

Exploration & Development — Quick Takes

McMoRan drilling ultradeep gulf shelf prospect

McMoRan Exploration Co., New Orleans, is setting intermediate casing at 23,500 ft, below a salt weld, at a proposed 28,000-ft ultradeep shelf prospect as part of its Gulf of Mexico exploration program.

McMoRan reentered a wellbore on South Marsh Island Block 230 in 20 ft of water south of Vermilion Bay. The Davy Jones prospect involves a large ultradeep structure on four blocks. The company will deepen the well to test Eocene Wilcox, Paleocene, and possibly Cretaceous Tuscaloosa.

Working interests in the prospect are expected to be McMoRan 25.7%, Plains Exploration & Production Co. 27.7%, Energy XXI 15.8%, Nippon Oil Exploration USA Ltd. 12%, W.A. "Tex" Moncrief Jr. 8.8%, and a private investor 3%.

Meanwhile, McMoRan plans to kick off a second sidetrack shortly at its Blueberry Hill deep gas prospect in 10 ft of water on Louisiana State Lease 340. The initial well and a first sidetrack established a 190-ft vertical hydrocarbon column, and the second sidetrack is to identify an optimum production take point.

McMoRan plans an updip sidetrack of the Hurricane Deep well on the southern flank of the Flatrock structure on South Marsh Island Block 217 in the fourth quarter of 2009.

Logs at the Hurricane Deep 226 well, drilled to 20,712 ft true vertical depth in early 2007, indicated an exceptionally thick upper Gyro sand totaling 900 gross ft, the top 40 ft of which were hydrocarbon-bearing. McMoRan believes the updip sidetrack could intersect a thicker hydrocarbon column.

McMoRan recompleted the Flatrock-5 well in September for production of 65 MMcfd of gas equivalent, bringing total output from five of the six Flatrock field wells to 265 MMcfed. Flatrock-4, shut-in in August due to a wellbore mechanical issue, is to return to production in the fourth quarter.

McMoRan plugged as noncommercial the Sherwood deep gas exploratory prospect on High Island Block 133. TD is 17,000 ft.

Talisman consolidates in Papua New Guniea

Talisman Energy Inc. has consolidated its foothold in Papua New Guinea by farming into Sydney-based New Guinea Energy Ltd.'s (NGE) onshore western province permits PPL 268 and PPL 269.

NGE announced in July 2008 that it had reached an agreement with a multinational oil company, but refrained from naming the company until the farm-in agreement had been finalized.

For permit PPL 269 NGE will assign an initial 50% interest and operatorship to Talisman. Talisman will then reimburse NGE for 75% of the direct costs of past expenditure—about \$5 million—and fund an agreed seismic program up to a maximum of \$6 million as well as comit to drilling, completing and testing a well up to a maximum of \$15 million.

NGE will also have the option of progressively assigning up to an additional 20% interest in the permit based on the decisions over its funding share in the second and third option wells to a maximum of \$15 million/well.

If NGE chooses to remain at 50% interest, Talisman will have

the right to proceed with two additional wells by contributing 75% of the costs of the second and 65% of the costs of the third.

For PPL268, Talisman will assume an interest and operatorship of 15% by reimbursing NGE for 50% of past costs (\$2.17 million) and funding an agreed seismic program up to a maximum of \$5 million.

Talisman will be able to gain a further 35% by funding 80% of the costs of drilling, completing and testing a well. It can gain another 20% interest by funding 100% of two more wells.

NGE has decided not to farm out its third permit in the region (PPL267) and expects to drill a well on its Panakawa prospect before yearend.

Talisman's interests in PNG also include ownership of Rift Oil, which also has permits in the western province and a farm-in to nearby permits held by Horizon Oil.

Washington exploratory well disappoints Delta

Delta Petroleum Corp., Denver, said its plans for further drilling in the southern Columbia River basin in Washington state have been placed on hold until the company reviews completion and test information from the Gray 31-23 well, where tests have proved noncommercial thus far.

Delta perforated and tested the majority of the prospective zones in the Gray well at 11,580-12,280 ft.

"The six lowermost zones demonstrated high pressures as expected, but have flowed only fresh water to date. The zones located further uphole have flowed a combination of water and gas; however, the gas volumes have been minimal and substantially below precompletion expectations deeming these intervals uneconomic," the company said.

More tests are planned in the basalt section on intervals that had gas shows during drilling.

Delta and Husky Energy Ltd. hold 50-50 interests in 424,000 net undeveloped acres in the basin.

Aegean to start second phase at Epsilon field

Aegean Energy SA and Kavala Oil SA will use the Ensco85 (E85) jack up rig to start the second phase of its drilling program in Epsilon field off Greece with what would be the deepest and longest well ever drilled there.

The program, which calls for drilling in the Gulf of Kavala about 8 km west of Thassos Island and 18 km south from the main coast, was approved by the Greek Ministry of Development. The well will be spudded by the end of September. It is expected to reach a TVD of 5,500 m and vertical depth of 2,900 m within 90 days.

Aegan Energy secured \$50 million from Standard Chartered Bank to underpin its program and hired Schlumberger to provide drilling management services.

The 2,000-hp E85 rig is capable of a maximum drilling depth of 7,600 m.

Last month Aegean Energy completed the PNA-H3 horizontal well on Prinos North field in Greece, which reached a TD of 4,370 m over 135 days because of the reservoir's complexity. It

Oil & Gas Journal / Sept. 28, 2009

Whether in the heat of the desert or in the arctic permafrost: The responsible treatment of natural resources is one of our core beliefs. They naturally include the appreciation we have for all oil and gas that is transported by our pipes. Everywhere. **EUROPIPE. Full of energy.**

 $\textbf{EUROPIPE GmbH} \cdot \textbf{+49\,208\,9760} \cdot \textbf{www.europipe.com} \cdot \textbf{An enterprise of the Dillinger H\"utte} \ \textbf{and Salzgitter Mannesmann groups}$

was drilled by the Energy Exeter jack up rig. The field lies in 50 m of water.

This and the Epsilon well are expected to increase production to 5,000 b/d from 1,300 b/d. \spadesuit

Drilling & Production — Quick Takes

World's first acoustic optical fiber installed

Composite Energy Ltd., Stirling, UK, installed the world's first downhole distributed acoustic optical-fiber monitoring system in a coalbed methane well in Scotland, according to Fotech Solutions Ltd., Hampshire, UK, the fiber's manufacturer.

The system is providing data such as downhole pump conditions, water level, flow profiles across production intervals, well-head vibrations, and gas flow. Fotech notes that other potential uses include monitoring and locating sand production, determining tubing integrity, and detecting cross flow.

The system includes a low-cost telecoms-grade optical fiber and Flotech's Helios interrogator that provides acoustic or vibration information for each meter along the fiber's length, Fotech says.

Composite Energy, established in 2004, is active in developing CBM and holds 21 licenses covering coal fields in Scotland, England, and Wales.

Camamu-Almada basin block to be relinquished

A group led by Petroleo Brasileiro SA (Petrobras) plans to relinquish the B-CAM-40 exploration block to Brazil's Agencia Nacional do Petroleo (ANP).

No further exploration is planned on the Camamu-Almada basin block, whose exploration license has expired, said Norse Energy Corp. ASA, Oslo, which holds 10% interest. Petrobras holds 35% interest, and Brazil's Queiroz Galvao Perfuracao holds 55%.

Production from Manati gas-condensate field on the block reached a record 7.13 million cu m/day on Sept. 17. Output had averaged 5.23 million cu m/day so far in the current quarter, and the record was made possible by the completion of maintenance at a fertilizer plant that takes the field's gas, Norse said.

Norse expects production to stabilize above 6 million cu m/day for the rest of 2009 and increase further in 2010 (OGJ Online, Jan. 22, 2007).

Meanwhile, the 2001 Camarao Norte discovery, 9 km south of Manati field, which extends into the BM-CAL-4 block held 100% by El Paso Corp., is to be unitized, and unitization discussions will occur within months.

Reservoirs at Camarao Norte, formerly BAS-131, are in Upper Jurassic Sergi sandstones, same as at Manati. Norse estimates its 10% share of recoverable oil and gas at 12.4 million boe. The field is a 17 sq km ring-fenced area in 40 m of water.

El Paso declared commerciality of the field in the BM-CAL-4 block and proposed the name of Camarao. ◆

Processing — Quick Takes

Siberian gas plant expansion starts up

Russian petrochemicals giant Sibur LLC announced earlier this month start-up of the second stage of its expansion at the Yuzhno-Balyksky gas processing plant in the Tyumen region, roughly 600 miles west of Novosibirsk.

The plant handles a hydrocarbon feed associated with crude oil production (called "associated petroleum gas") which it separates into natural gas, NGLs, and napthas. Its expansion doubles inlet capacity to 3 billion cu m/year (nearly 3 bcfd) and pushes Sibur's company-wide gas processing capacity to 19 billion cu m/year, said its announcement.

Sibur told OGJ that its current facilities under the Sibur Group include six gas processing plants—Nyagan, Muravlenkovsky, Gubkinsky, Yuzhno-Balyksky, Nizhnevartovsk, and Belozerny—and three compressor stations—Vyngopurovskaya, Varyeganskaya, and Vyngayakhinskaya. All are in western Siberia.

The new complex at Yuzhno-Balyksky consists of a booster compression station, drying and low-temperature condensation sections, a propane refrigeration plant, and other facilities.

Modernization of Yuzhno-Balyksky gas plant began in 2007 with the first stage increasing associated-gas processing capacity to 1.5 billion cu m/year from 900 million cu m/year.

The just-completed second stage of the expansion was designed by NIPIgazpererabotka JSC, Sibur's engineering center for gasprocessing technologies, said the company. The control system was fully automated by Yokogawa Co., Japan. The new complex can handle both high and low-pressure associated gas.

When the entire new complex attains design capacity, the plant will produce 2.8 billion cu m/year of dry gas and 900,000 tonnes/year (about 28,000 b/d) of light hydrocarbons.

The capacity increase is aimed at receiving additional volumes of associated natural gas, mainly from the Priobskoye oil field that is being developed by Rosneft JSC. Sibur said modernization and expansion at the Yuzhno-Balysky plant have improved utilization of raw stream produced gas to 95%.

Partners break ground on Devil Creek gas plant

Joint venture partners Apache Energy Ltd. and Santos Ltd. broke ground at the Devil Creek domestic natural gas processing plant site in the Pilbara region of Western Australia about 50 km south of Karratha.

The plant will be fed raw gas through a 105-km subsea pipeline from the joint venture's offshore Reindeer field development in the WA-209-P permit.

The plant will supply as much as 220 TJ/day of gas into the Dampier-Bunbury trunk line. It will also produce as much as 500 b/d of condensate.

Santos has already signed up CITIC Pacific Ltd., Hong Kong, as the project's foundation gas buyer.

Under the \$812 million (Aus.) contract, Santos will supply CIT-IC's Sino Iron magnetite mining project at Cape Preston, 100 km south of Dampier with 75 PJ of gas over 7 years from the latter half

Oil & Gas Journal / Sept. 28, 2009

of 2011. The gas will be used as generation fuel for Sino's 450-Mw electric power station now under construction.

Reindeer field was discovered in 1997 and has a recoverable resource range of 390-610 bcf of gas.

Perth-based engineering and construction company Clough Australia is engaged as engineering, procurement and module fabrication contract for the Devil Creek project.

The \$54 million (Aus.) contract is for engineering, design work, and procurement of all permanent materials and equipment plus fabrication and assembly of all modules for the facility.

Apache Energy in West Perth, a subsidiary of Houston-based Apache Corp., has 55% of the project with Santos holding 45%.

Tullow will sell stake to fund Uganda refinery

Tullow Oil Ltd. plans to sell part of its Ugandan assets to finance an oil pipeline project and other production infrastructure, according to state media.

Uganda's state-owned New Vision newspaper said Tullow confirmed it would sell part of its wholly owned Block-2, to finance developments in the Lake Albertine basin.

"Uganda's oil basin development plan is an integrated project that requires building of a refinery that is linked with pipelines to supply local, regional and international markets," said Tim O'Hanlon, Tullow's vice-president for African business.

O'Hanlon said a joint venture undertaking is crucial because "we are an exploration and production company, but not in the

pipeline or refinery business. ...We need a partner with expertise in this area."

He said Tullow has "received many interested firms, but we are still screening them with the government to get the right part-

Uganda's President Yoweri Museveni has said he will not allow international oil companies to refine the oil outside the country, saying it must be refined domestically to ensure that more profits are retained in the country.

Meanwhile, the discovery of oil in Uganda and plans to build a refinery could be delaying construction of the planned 320-km Eldoret to Kampala oil pipeline, according to a senior Kenyan ministry official.

Work has yet to begin on the pipeline, which was awarded to the Libyan-backed Tamoil East Africa in 2006, due to concerns that a refinery in Uganda will reduce profitability of their business and require more time to recoup their investment.

"The Libyans are asking for certain guarantees that should Uganda construct a refinery, it will in no way affect the pipeline usage," said Peter Nyoike, Permanent Secretary in Kenya's Ministry of Energy.

In June, Tamoil announced groundwork on the pipeline was expected to begin in July, with completion scheduled for 2011— 4 years later than planned. Tamoil will hold a 51% stake in the pipeline, while Uganda and Kenya will jointly hold the remaining 49%. ♦

Transportation — Quick Takes

FERC issues final EIS for FGT expansion project

The US Federal Energy Regulatory Commission's staff issued a final environmental impact statement on Florida Gas Transmission Co.'s Phase VIII expansion project just 5 months after it issued a draft EIS on the proposed \$2.46 billion project.

The proposed line expansion in Alabama and Florida would add 820 MMcfd of capacity to FGT's system, FERC said. The project would include laying 483.2 miles of multidiameter pipeline, adding 198,000 hp of compression to eight existing stations, building a 15,600-hp compression station, constructing three meter and regulator stations, and upgrading two existing meter stations and building a regulator station, FERC said Sept. 18 in the final EIS.

The proposed expansion, expected to cost \$2.455 billion, would start service in Spring 2011, assuming that it receives the necessary permits and approvals, according to FGT. The system is owned by Citrus Co., a joint venture of Southern Union Co., the pipeline's operator, and El Paso Corp.

FERC's final EIS said the proposed project would have limited environmental impacts, with appropriate mitigation measures, for reasons similar to those it listed in the draft EIS on Apr. 17. Commissioners will consider public comments and the final EIS before making a final decision, FERC said.

Golar LNG sign Fisherman's Landing deal

Golar LNG has signed a heads of agreement to sell LNG from the Fisherman's Landing coalseam methane-LNG project near Gladstone to Toyota Tsucho Corp. of Japan.

Toyota has agreed to buy 1.5 million tonnes/year of LNG for 12 years beginning in 2014.

Negotiations are now under way for the Toyota Group trading company to also buy a minority equity interest in the Fisherman's Landing project.

It is the smallest of the five CSM-supplied LNG plants proposed for Gladstone. The \$500-million plant, scheduled to come on stream in 2012, is being developed by Golar and Perth Co. LNG Ltd. and will be supplied by CSM from Brisbane-based Arrow Energy Ltd.'s fields in the Surat basin in central Queensland.

Arrow says it has more than enough gas to supply the first LNG train. Site preparation has already commenced and documentation for front-end engineering and design has been submitted. In addition shipping agreements are in place and Toyota has become the foundation buyer.

At the moment LNG Ltd. and Golar each have a 40% interest in the Fisherman's Landing plant while Arrow has the option to take the remaining 20% stake. ◆

Correction

Japan's refiners facing hard choices, must seek alliances to ease closings" (OGJ, Aug. 3, 2009, p. 44) by Tomoko Hosoe, the vertical axis (Million b/d) was inadvertently reversed. The increments should ascend the axis 0 to 6.

Oil & Gas Journal / Sept. 28, 2009

Everything for Oilwell Cementing

Everything but the Cement!

HINGE-TYPE CENTRALIZERS

Industrial Rubber's Hinge-Type Centralizers feature channel-formed collar rings with hinges placed within the channel to eliminate hinge damage. This construction assures that hinges will not rupture while casing is being run regardless of hole direction or irregularities in formations and that the centralizer will provide effective centering down hole.

The design of the split collars and narrow bow springs provide maximum effective centralizing of the casing with minimum obstruction to annular flow. Industrial Rubber Hinge-Type Centralizers are available in sizes 23/8" through 20".

Regular Float Shoe

FLOAT EQUIPMENT

Regular Ball-Type Flapper Type Automatic Fill-up

Industrial Rubber's three types of float shoes and float collars are engineered for rugged dependability. Drillable parts are made from high strength aluminum alloy formulated for ease of drilling. All three types of float equipment are designed to provide adequate flow passage and to withstand the abrasive action of large volumes of fluids. Write or call for details on rugged and dependable float equipment from Industrial Rubber, Inc.

WRITE FOR NEW CATALOG

EVERYTHING FOR OILWELL CEMENTING.

Plugs, casing centralizers, baskets, float equipment, stage cementing tools,

EVERYTHING BUT THE CEMENT.

CALL TOLL-FREE 800-457-4851 FOR PRICE AND DELIVERY

PRIVATELY OWNED -ESTABLISHED IN 1965

P. O. Box 95389 Oklahoma City, Ok. 73143-5389 Phone 405/632-9783 Fax 405/634-9637

alen d

→ Denotes new listing or a change in previously published information.

Additional information on upcoming seminars and conferences is available through OGJ Online, Oil & Gas Journal's Internet-based electronic information source at http://www.ogjonline.com.

2009

SEPTEMBER

ERTC Sustainable Refining Conference, Brussels, 44 1737 365100, +44 1737 365101 (fax), e-mail: events@ gtforum.com, website: www. gtforum.com. 28-30.

DGMK Production and Use of Light Olefins Conference, Dresden, 040 639004 0. 040 639004 50, website: www.dgmk.de. 28-30.

IADC Advanced Rig Technology Conference, Houston, (713) 292-1945, (713) 292-1946 (fax), e-mail: conferences@iadc.org, website: www.iadc.org. 29.

Unconventional Gas International Conference & Exhibition, Fort Worth, Tex., (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@ pennwell.com, website: www. unconventionalgas.net. Sept. 29-Oct. 1.

ERTC Biofuels+ Conference, Brussels, 44 1737 365100, +44 1737 365101 (fax), e-mail: events@gtforum.com, website: www.gtforum.com. Sept. 30-Oct. 2.

OCTOBER

Interstate Oil and Gas Compact Commission Annual Meeting (IOGCC), Biloxi, Miss., (405) 525-3556, (405) 525-3592 (fax), e-mail: iogcc@iogcc.state. ok.us, website: www.iogcc. state.ok.us. 4-6.

SPE Annual Technical Conference and Exhibition, New Orleans, (972) 952-9393, (972) 952-9435 (fax), email: spedal@spe.org, website: www.spe.org. 4-7.

Canadian Offshore Resources Exhibition & Conference (CORE), Halifax, NS, (902) 425-4774, (902) 422-2332 (fax), e-mail: events@otans. com, website: www.otans. com. 5-8.

World Gas Conference, Buenos Aires, +54 11 5252 9801, e-mail: registration@ wgc2009.com, website: www. wgc2009.com. 5-9.

ISA EXPO, Houston, (919) 549-8411, (919) 549-8288 (fax), e-mail: info@isa.org, website: www.isa.org. 6-8.

Kazakhstan International Oil & Gas Exhibition & Conference (KIOGE), Almaty, +44 (0) 207 596 5233, +44 (0)207 596 5106 (fax), e-mail: oilgas@ite-exhibitions.com, website: www.oilgas-events.com. 6-9.

Power-Gen Asia Conference, Bangkok, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www. powergenasia.com. 7-9.

Renewable Energy World Asia Conference & Expo, Bangkok, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www.renewableenergyworldasia.com. 7-9.

NPRA Q&A and Technology Forum, Ft. Worth, Tex., (202) 457-0480, (202) 457-0486 (fax), e-mail: info@npra.org, website: www.npra.org. 11-14.

API Fall Petroleum Measurement Standards Meeting,

Oil & Gas Journal / Sept. 28, 2009

Calgary, Alta., (202) 682-8000, (202) 682-8222 tions.com. 14-17. (fax), website: www.api.org. 12-15

GPA Houston Annual Meeting, Houston, (918) 493-3872, (918) 493-3875 (fax), e-mail: pmirkin@ gpaglobal.org, website: www. gpaglobal.org. 13.

Expandable Technology Forum, Houston, +44 (0) 1483 598000, e-mail: sally. marriage@otmnet.com, website: www.expandableforum. com. 14-15.

International Oil & Gas Exploration, Production & Refining Exhibition, Jakarta, +44 (0)20 7840 2100, +44 (0)20 7840 2111 (fax), email: ogti@oesallworld.com,

website: www.allworldexhibi

SPE/EAGE Reservoir Characterization and Simulation Conference and Exhibition. Abu Dhabi, (972) 952-9393, gyexchange.co.uk. 20-22. (972) 952-9435 (fax), email: spedal@spe.org, website: SEG International Exposition www.spe.org. 18-21.

GSA Annual Meeting, Portland, (303) 357-1000, (303) 357-1070 (fax), e-mail: meetings@geosociety. org, website: www.geosociety. org. 18-21.

Oil Shale Symposium, Golden, Colo., (303) 384-2235, e-mail: jboak@mines.edu, website: www.mines.edu/ outreach/cont_ed/oilshale/. 19-23.

Oil and Gas Transportation in ing, Copenhagen, +44 (0) the CIS and Caspain Region Annual Meeting, Moscow, +44 (0) 20 7067 1800, +44 (0) 20 7242 2673 (fax), website: www.theener-

and Annual Meeting, Houston, (918) 497-5500, (918) 497-5557 (fax), e-mail: register@seg.org, website: www.seg.org. 25-30.

SPE/IADC Middle East Drilling Conference & Exhibition, Manama, +971 4 390 3540, +971 4 366 4648 (fax), e-mail: spedal@spe.org, website: www.spe.org. 26-28.

PICT-Passive Inflow Control Technology Meet-

1483-598000, e-mail: Dawn.Dukes@otmnet.com, website: www.inflowcontrol. com. 27-28.

Louisiana Gulf Coast Oil Exposition (LAGCOE), Lafay- Exhibition, Monte Carlo, 237-1030 (fax), e-mail: lynette@lagcoe.com, website: www.lagcoe.com. 27-29.

North African Oil and Gas Summit, Tunis, +44 (0) 20 7067 1800, +44 (0) 20 7242 2673 (fax), website: www.theenergyexchange.co.uk. site: www.ipaa.org. 4-6. 27-29.

Offshore Middle East Conference & Exhibition, Manama. (918) 831-9160, (918) 831-9161 (fax), e-mail:

registration@pennwell.com, website: www.offshoremiddleeast.com. 27-29.

NOVEMBER

Deep Offshore Technology International Conference & ette, (337) 235-4055, (337) (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www.deepoffshoretechnology. com. 3-5.

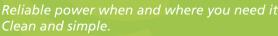
> IPAA Annual Meeting, New Orleans, (202) 857-4722, (202) 857-4799 (fax), web-

GPA North Texas Annual Meeting, Dallas, (918) 493-3872, (918) 493-3875 (fax), e-mail: pmirkin@ gpaglobal.org, website: www. gpaglobal.org. 5.

Capture and Geological Storage of CO. Symposium, Paris, +33 1 47 52 67 21, +33 1 47 52 70 96 (fax), e-mail: patricia.fulgoni@ifp.fr, website: www.CO2symposium. com. 5-6.

Sulphur International Conference and Exhibition, Vancouver, +44 20 7903 2058, +44 20 7903 2172 (fax), e-mail: cruevents@ crugroup.com, website: www. sulphurconference.com. 8-11.

Gas Turbine Users International (GTUI) Annual Conference, Calgary, Alta., +9714 804 7738, +9714 804 7764 (fax), e-mail: info@gtui.org, website: www. gtui.org. 8-13.



Reliable power for the oil & gas industry

- Flexible runs on gaseous, renewable & liquid fuels
- Scalable 30 kW to 10 MW of power
- Low maintenance only one moving part; no lubricants

www.capstoneturbine.com

Oil & Gas Journal / Sept. 28, 2009

alen d a r

IADC Annual Meeting, Miami, (713) 292-1945, (713) 292-1946 (fax), e-mail: conferences@iadc.org, website: www.iadc.org. 9-10.

Multiphase User Roundtable-South America, Rio de Janeiro, (979) 268-8959, (979) 268-8718 (fax), e-mail: Heather@petroleumetc.com, website: www.mur-sa.org. 9-10.

API Fall Refining and Equipment Standards Meeting, Dallas, (202) 682-8000, (202) 682-8222 (fax), website: www.api.org/events. 9-11.

Digital E&P Event, Houston, (646) 200-7444, (212) 885-2733 (fax), e-mail: cambrosio@wbresearch.com, website: www.digitaleandp. com. 9-11.

NPRA/API Operating Practices Symposium, Dallas, (202) 457-0480, (202) 457-0486 (fax), website: www.npra.org. 10.

Petroleum Association of Wyoming (PAW) Annual Oil IADC Well Control Asia Pa-& Gas Statewide Reclamation Conference, Casper, (307) 234-5333, (307) 266-2189 (fax), e-mail: cheryl@pawyo. org, website: www.pawyo. org. 10.

Deepwater Operations Conference & Exhibition, Galveston, Tex., (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www.deepwateropera- contractriskmanagement. tions.com. 10-12.

SPE International Oil and Gas China Conference & Exhibition, Beijing, (972) 952-9393, (972) 952-9435 (fax), e-mail: spedal@spe.org, website: www.spe.org. 10-12.

NPRA International Lubricants & Waxes Meeting,

Houston, (202) 457-0480, (202) 457-0486 (fax), website: www.npra.org. 12-13.

cal Engineering Congress and Exposition (IMECE), Lake Buena Vista, Fla., (973) 882-1170, (973) 882-1717 (fax), e-mail: infocentral@ asme.org, website: www.asme. org. 13-19.

◆Latin America LPG Seminar, Miami, (713) 331-4000, (713) 236-8490 (fax), e-mail: ts@ purvingertz.com, website: www.purvingertz.com. 16-19.

IADC Completions Conference, Houston, (713) 292-1945, (713) 292-1946 (fax), e-mail: conferences@ iadc.org, website: www.iadc. org. 17.

Houston Energy Financial Forum, Houston, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@ pennwell.com, website: www. accessanalyst.net. 17-19.

cific Conference & Exhibition, Bangkok, (713) 292-1945, (713) 292-1946 (fax), e-mail: conferences@iadc.org, website: www.iadc.org. 18-19.

DECEMBER

Advanced Contract Risk Management Europe for Oil & Gas, Aberdeen, +44 0 207 368 9300, e-mail: enquire@ iqpc.co.uk, website: www. MAC=11579.003EDIARY.

Refining and Petrochemicals in 2010Russia and the CIS Countries Annual Meeting, Amsterdam, +44 (0) 20 7067 1800, +44 (0) 20 7242 2673 (fax), website: www.theenergyexchange.co.uk. 1-3.

World LNG Summit, Barcelona, +44 (0)20 7978 0000, +44 (0)20 7978 0099 (fax), e-mail: info@ ASME International Mechani- thecwcgroup.com, website: www.thecwcgroup.com. 1-4.

> European Drilling Engineering Association Expandables, Multilaterals and Technologies Meeting, Vienna, +44 (0) 1483-598000, e-mail: Dukes@otmnet.com, website: www.dea-europe.com. 3-4.

Nuclear Power International Conference, Las Vegas, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@ pennwell.com, website: www. nuclearpowerinternational. com. 8.

Power-Gen International Conference, Las Vegas, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@ pennwell.com, website: www. power-gen.com. 8-10.

PIRA Natural Gas Markets Conference, New York, (212) 686-6808, (212) 686-6628 (fax), e-mail: sales@ pira.com, website: www.pira. com. 14-15.

PIRA Understanding Natural Gas and LNG Markets Seminar, New York, (212) 686-6808, (212) 686-6628 (fax), website: www. pira.com. 14-15.

PIRA Understanding Global Oil Markets Seminar, New York, (212) 686-6808, (212) 686-6628 (fax), website: www.pira.com. 16-17.

JANUARY

Plant Maintenance in the Middle East & Annual Meeting, Abu Dhabi, +44 (0) 1242 529 090, +44 (0)

1242 529 060 (fax), e-mail: The European Gas Conference wra@theenergyexchange. co.uk, website: www.wraconferences.com. 10-13.

Oil & Gas Maintenance Technology Conference & Exhibition Co-located with Pipeline Rehabilitation and Maintenance, Manama, Bahrain, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www.oilandgasmaintenance.com. 18-20.

Pipeline Rehabilitation & Maintenance Co-located with Oil & Gas Maintenance Technology, Manama, Bahrain, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www.pipeline-rehab. com. 18-20.

World Future Energy Summit, Abu Dhabi, +971 2 4090 445, +971 2 444 3768 (fax), e-mail: ludoiva. sarram@reedexpo.ae, website: www.worldfutureenergysummit.com. 18-21.

SPE Oil and Gas India Conference and Exhibition, Mumbai, (972) 952-9393, (972) 952-9435 (fax), email: spedal@spe.org, website: www.spe.org. 20-22.

SPE Deep Gas Conference, Manama, (972) 952-9393, (972) 952-9435 (fax), email: spedal@spe.org, website: e-mail: info@.org, website: www.spe.org. 24-27.

API Exploration and Production Winter Standards Meeting, New Orleans, (202) 682-8000, (202) 682-8222, website: www.api.org.

Health, Safety, Environment & Training Conference & Exhibition, Houston, (713) 292 1945, (713) 292 1946 (fax), e-mail: info@iadc.org, website: www.iadc.org. 26-27. and Annual Meeting, Vienna, +44 (0) 20 7067 1800, +44 (0) 20 7242 2673 (fax), website: www.theenergyexchange.co.uk. 26-28.

API/AGA Joint Committee on Oil and Gas Pipeline Welding Practices Conference, New Orleans, (202) 682-8000, (202) 682-8222 (fax), website: www.api.org. 27-29.

Annual Gas Arabia Summit, Abu Dhabi, +44 (0) 20 7067 1800, +44 (0) 20 7242 2673 (fax), website: www.theenergyexchange.co.uk. Jan. 31- Feb. 3.

International Process Analytical Technology Forum (IFPAC), Baltimore, (847) 543-6800, (847) 548-1811 (fax), e-mail: info@ifpacnet. org, website: www.ifpac.com. Ian 31-Feb 4.

FEBRUARY

Deep Offshore Technology International Conference & Exhibition, Houston, (713) 963-6271, (713) 963 6296 (fax), e-mail: registration@ pennwell.com, website: www. dotinternational.net. 2-4.

IADC/SPE Drilling Conference and Exhibition, New Orleans, (713) 292 1945, (713) 292 1946 (fax), www.iadc.org. 2-4.

Russia Offshore Annual Meeting, Moscow, +44 (0) 20 7067 1800, +44 (0) 20 7242 2673 (fax), website: www.theenergyexchange. co.uk. 2-4.

Global Petrochemicals Conference & Annual Meeting, Vienna, Austria, +44 (0) 1242 529 090. +44 (0) 1242 529 060 (fax), e-mail: ou.edu, website: www.lrgcc. wra@theenergyexchange.

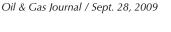
co.uk, website: www.wraconferences.com. Feb 9-11.

SPE International Symposium & Exhibition of Formation Damage Control, Lafayette, (972) 952-9393, (972) 952-9435 (fax), e-mail: spedal@spe.org, website: www.spe.org. 10-12.

NAPE Expo, Houston, (817) 847-7701, (817) 847-7703 (fax), e-mail: info@ napeexpo.com, website: www. napeonline.com. Feb 11-12.

Annual Petroleum Coke Conference, Seattle, (832) 351-7828, (832) 351-7887 (fax), e-mail: petcoke.conference@jacobs.com, website: www.petcokes.com. 12-13.

SPE North Africa Technical Conference & Exhibition, Cairo, (972) 952-9393, (972) 952-9435 (fax), email: spedal@spe.org, website: www.spe.org. 14-17.


◆IP Week, London, +44 0 20 7467 7132, +44 0 20 7255 1472 (fax), e-mail: jbia@energyinst.org.uk, website: www.energyinst.org. uk. 15-18.

Pipeline Pigging & Integrity Management Conference & Exhibition, Houston, (713) 521-5929, (713) 521-9255 (fax), e-mail: clarion@ clarion.org, website: www. clarion.org. 16-18.

Pipe Line Contractors Association Annual Conference (PLCA), Scottsdale, Ariz. (214) 969-2700, e-mail: plca@plca.org, website: www. plca.org. 17-21.

Laurance Reid Conditioning Conference, Norman, Okla., (512) 970-5019, (512) 233-2877 (fax), e-mail: bettyk@ org. 21-24.

Previous Page | Contents | Zoom In | Zoom Out | Front Cover | Search Issue | Next Page

International Petrochemicals Technology Conference & Exhibition, Madrid, +44 (0) 20 7357 8394, +44 (0) 20 7357 8395 (fax), e-mail: enquiries@europetro.com, website: www.europetro.com. 22-23.

Photovoltaics World Conference & Exhibition. Austin. (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www.Photovaltaicsworldevent. com. 23-25.

Renewable Energy World North America Conference & Expo, Austin, (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@ pennwell.com, website: www. renewableenergyworld-events. com. 23-25.

SPE Unconventional Gas Conference, Pittsburgh, (972) 952-9393, (972) 952-9435 (fax), e-mail: spedal@spe.org, website: www.spe.org. 23-25.

International Downstream Technology & Catalyst Conference & Exhibition, Madrid, +44 (0) 20 7357 8394, +44 (0) 20 7357 8395 (fax), e-mail: enquiries@ europetro.com, website: www. europetro.com. 24-25.

SPE/IADC Managed Pressure Drilling & Underbalanced Operations Conference and Exhibition, Kuala Lumpur, (972) 952-9393, (972) 952-9435 (fax), e-mail: spedal@spe.org, website: www.spe.org. 24-25.

Nitrogen + Syngas International Conference and Exhibition, Bahrain, +44 20 7903 2058, +44 20 7903 2172 (fax), e-mail: cruevents@ crugroup.com, website: www. nitrogenandsyngas2010.com. Feb. 28-Mar. 3.

MARCH

APPEX Conference, London, +44 0 20 74341399, +44 0 20 74341386 (fax) website: www.appexlondon. com. 2-4.

Subsea Tieback Forum & Exhibition, Galveston, Tex., (918) 831-9160, (918) 831-9161 (fax), e-mail: registration@pennwell.com, website: www.subseatiebackforum.com. 2-4.

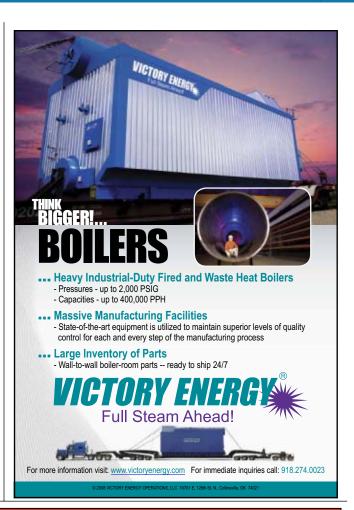
Middle East Geosciences Conference and Exhibition, Manama, +973 17 550033, +973 17 553288 (fax), e-mail: fawzi@aeminfo.com. bh, website: www.geobahrain. org. 7-10.

SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, (972) 952-9393, (972) 952-9435 (fax), email: spedal@spe.org, website: www.spe.org. 8-9.

Annual International LPG Seminar, The Woodlands, Tex., (713) 331-4000, (713) 236-8490 (fax), website: www.purvingertz. com. 8-11.

CERA Week, Houston, (617) 866-5992, e-mail: info@ cera.com, website: www.cera. com. 8-12.

NPRA Security Conference & Exhibition, The Woodlands, Tex., (202) 457-0480, (202) 457-0486 (fax), email: info@npra.org, website: www.npradc.org. 9-10.


Annual European Fuels Conference, Paris, +44 (0) 1242 529 090. +44 (0) 1242 529 060 (fax), e-mail: wra@theenergyexchange. co.uk, website: www.wraconferences.com. 9-12.

NACE International Corrosion Conference & Expo, San Antonio, (281) 228-6200, (281) 228-6300 (fax), e-mail: firstservice@nace.org, website: www.nace.org. 14-18.

International Pump Users Symposium, Houston, (979) 845-7417, (979) 845-1835 (fax), e-mail: inquiry@ turbo-lab.tamu.edu, website: http://turbolab.tamu.edu. 15-18.

API Spring Committee on Petroleum Measurement Standards Meeting, Dallas, (202) 682-8000, (202) 682-8222 (fax), website: www.api.org. 15-18.

Gas Asia, Kuala Lumpur, +44 (0) 1242 529 090, +44 (0) 1242 529 060 (fax), e-mail: wra@theenergyexchange.co.uk, website: www.theenergyexchange.co.uk.

Journally Speaking

Algae's growing popularity

Paula Dittrick Senior Staff Writer

Established investors, including one notable oil major, are putting money into early-stage companies developing algae-based biofuel. A handful of algae companies are among various entrepreneurs racing to commercially produce a next-generation biofuel.

ExxonMobil Corp. recently joined the race to develop algae-based biofuels, saying it will invest \$300 million with Synthetic Genomics Inc., a San Diego company founded by J. Craig Venter. ExxonMobil is spending another \$300 million internally on algae research.

Emil Jacobs, vice-president of research and development at ExxonMobil Research & Engineering Co., shared some of the company's thinking about its collaboration with Synthetic Genomics.

The collaboration likely will last 5-6 years, Jacobs told reporters during a July conference call in which Exxon-Mobil announced its investment.

Jacobs said he is unsure what fuels ultimately might result from the collaboration. He and Venter would not discuss specific technology with reporters, saying researchers will investigate all options.

Synthetic Genomics plans to build a test plant in San Diego to study growing algae in open ponds and in closed photosynthetic bioreactors. The test plant's researchers also will study oilextraction techniques.

The gist of Venter's research involves genetic engineering on an industrialscale culturing of algae to yield hydrocarbons. Previously, Venter worked on sequencing a human genome. He likes to describe his current algae research as biomanufacturing.

ExxonMobil estimates that ultimately billions of dollars worth of investment could be needed before achieving commercial production of an algae-based fuel. The initial \$300 million investment is intended to help Venter tweak a biochemical path to alter the molecules of algal oil, leaving a hydrocarbon.

ExxonMobil's thinking

The major's decision came after its executives quietly investigated biofuels in general for more than a year. After considering the technical challenges of potential next-generation biofuel options, algae rose to the top of Exxon-Mobil's list.

"As far as products to expect from this program, our intent is to make hydrocarbons that look a lot like today's transportation fuels," Jacobs said. "We want to produce hydrocarbons that can go into a refinery to be processed along with other petroleum streams and then used in the transportation fleet or even jet fuel."

ExxonMobil planners want a biofuel that can attain large-scale production. Environmental footprint was another consideration. ExxonMobil considered water use, land use, and carbon emissions likely to result from the production of various biofuels.

The initial plan is to come up with a modular design involving an optimal

plant size. Then other production sites can be built as needed, Jacobs said.

Others react

Paul Dickerson, a partner with Haynes & Boone LLP, welcomes Exxon-Mobil's involvement in algae research. Dickerson launched the law firm's clean technology practice group. Formerly, he was chief executive of the US Department of Energy's Office of Energy Efficiency and Renewable Energy.

"All alternative energy provides a wonderful opportunity for incumbent energy companies," Dickerson said. "Exxon has been focused on energy production and distribution for generations. If we are bringing Exxon's expertise to alternatives, we as a nation are stronger."

He sees the clean technology industry entering a development phase where oil and gas companies can provide financial backing and also can provide valuable experience on converting successful laboratory results into practical commercial application.

"Clean-tech entrepreneurs are now looking to scale up, and oil companies know this drill," Dickerson said. "Oil companies have a long track record of planning, financing, and overseeing large projects. There are many areas for potential technical collaboration."

Michelle Ashby, chief executive officer of MINE LLC, and an organizer for energy investor meetings, notes algae may be the first in a new age of biofuels in which researchers carefully examine the whole life cycle involved in creating a fuel.

"There are a lot of tracks moving at the same time, one of them will emerge," to become mainstream, she said.

ExxonMobil believes any significant algae-based commercial development is still years away. "This is very early days," Jacobs said. "We've got a lot of work ahead of us."

Oil & Gas Journal / Sept. 28, 2009

CONFORMS TO THE STRICTEST COMPLIANCE STANDARDS.

AND THE PALM OF YOUR HAND.

Introducing Protégé™ multi-gas monitor. Tough, ergonomic and UL 913 7th edition certified. With a unique hourglass shape, bright display and intuitive user interface, Protégé helps you identify threats quickly and easily. Shown here actual size, it fits in your hand perfectly. It's the first monitor with UL 913 7th edition certification, meeting the highest global standards for toughness, durability and quality. What else would you expect from Scott? To learn more, visit www.scotths.com/protegepog.

©2009. All rights reserved.

Editorial

Dissent is just dissent

According to liberal assertions, to resist the radical stampede under way in the US is to be rude, violent, or racist. And liberals making these assertions want to improve political discourse. Does anyone see contradiction here?

The allegation of rudeness comes from President Barack Obama. On Sunday public-affairs television programs Sept. 20, Obama criticized three cable news networks for encouraging misbehavior. "The easiest way to get on television right now is to be really rude," he said on ABC's This Week with George Stephanopoulos. On CNN's State of the Nation, he urged networks to "reward decency and civility in our political discourse." And on CBS's Face the Nation, he said news programs and blogs "can't get enough of conflict," adding, "It's catnip to the media right now."

Liberal blitz

Who opposes civil discourse? But where's civility in the liberal blitz Obama has tried to press on the nation since taking office, including nationalization of US automakers, previously unimaginable government spending, state-centered overhaul of health care, and reconfiguration of the energy mix?

Offering blithe and often indefensible assurances to the contrary, the president proposes to expand government and hike costs of American existence for dubious reasons—and to do so swiftly. He has shown scant interest in discourse; he has, in fact, started a fight. To now scold the media for reporting conflict is disingenuous.

Woops. The fight metaphor implies violence, fear of which brought House Speaker Nancy Pelosi (D-Calif.) to tears during a Capitol Hill news conference Sept. 17. Asked whether intensifying political debate in the US might incite violence, Pelosi likened currently heated rhetoric with language in use during a gay rights controversy that led to the assassinations of two San Francisco officials in 1978. "I think we all have to take responsibility for our actions and our words," the weepy speaker said. Of pointed commentary, she warned, "The ears that it is falling on are not as balanced as the person making the statement might assume."

Pelosi's choke-up followed formal admonishment of Rep. Joe Wilson (R-SC) for an alarming

indiscretion during Obama's Sept. 9 speech to Congress on health care reform. When the president said legislation wouldn't provide illegal immigrants free coverage, Wilson blurted, "You lie!" Wilson apologized for what he described as a spontaneous breach of decorum. But the outburst revived suspicions that he is racist, which he denies.

By then, the racist cobra was out of the basket and riling the crowd. Did opposition to the first African-American president in US history betray racism? Yes, declared former President Jimmy Carter after Wilson's blunder. "I think an overwhelming portion of the intensely demonstrated animosity toward President Barack Obama is based on the fact that he is a black man, that he's African-American," Carter said on NBC Nightly News a day before making similar observations in a speech at Emory University.

All these allegations dangle on threads of truth. Rudeness happens, even in public life. Much more regrettably, some sick people commit violence, sometimes acting out political delusions. And, yes, racism lingers in American society. But it's possible to disagree with Obama's program without being guilty of any of that. In response to Obama's very liberal and urgently promoted program, dissent can be simply dissent, however hard its edges.

Familiar theme

Oil and gas professionals may sense a familiar theme in these utterances by liberal celebrities. It's how the statements characterize opposition instead of responding to it. The dominant political party, controlled now by its most liberal members, serves up an agenda that many Americans see as radical then treats disagreement as evidence of behavioral disorder. No wonder people are angry.

For the oil and gas industry, such treatment is standard. Industry expertise has come to be seen as perversion. US energy policy therefore heads in more errant directions, more rapidly, than ever before. Like Americans staging latter-day tea parties, the industry no longer can afford just to express rational concern about important issues. It first must redress condemnation by antagonists who'd rather moralize than argue.

OIL&GAS IOURNAL

SPE is what you need.

Worldwide events

SPE membership brings you discounted rates to more than 100 worldwide events where you can meet with other professionals to learn about and discuss the latest E&P technical advancements. Our conferences, workshops, and forums also provide opportunities for you to publish and present your latest ideas and findings.

SPE has something for everyone working in the upstream oil and gas industry, no matter where on the globe you may be.

Join our worldwide membership today at www.spe.org/join.

Society of Petroleum Engineers

ENERAL INTEREST

Efficiency improvements cut GHG emissions, help profits

Rick Beaubien Consultant

Houston

Policy makers and business leaders are sharpening their focus on ways to reduce greenhouse gas (GHG) emissions in the belief these reductions could improve the economy, weather, and quality of life. This topic has grown to such global pervasiveness that GHG issues now provide a common touchstone for all industrialized and emerging economies. While the merits

and concerns surrounding GHG emissions are too complex to examine fully in a single article, the drive to reduce emissions

has identified a universal benefit and is gaining momentum.

When applied selectively, increases in production efficiency reduce GHG emissions and increase business margins. Various regulatory initiatives would require operating improvements to account for GHG reductions of from 2% to more than 10% between 2010 and 2015.1 Overall, increased production efficiency involves:

- Energy recovery; heat losses to the environment.
- Higher mechanical reliability; less shutdowns, flaring, and process vent-
- · Improved energy transfer processes—thermal and mechanical.
- · Recovery and reuse of processing chemicals and byproducts.

Government regulations at all levels are demanding higher efficiency ratings and stepped up energy reduction programs.2 Individual states also are instituting their versions of GHG reduction programs, which, combined with federal programs, are included in the expanding requirements for project permitting, operations, and GHG reporting.

Communities surrounding US production centers are encouraged to participate in the development of policies that regulate industrial projects and operations in their area. This pattern is being repeated around the globe, albeit

at a slower pace in developing nations, with GHG initiatives becoming part of international trade, customs, and tariffs.3

Benchmarking GHG reductions is now an aspect of corporate sustainability. A corporate record of GHG reductions can be considered for the evaluation of preferred suppliers, partnerships, alliances, government regulations, and investor decisions.

Environmental policies that add GHG provisions raise the barrier for market entry, which is a concern for industries that supply consumer goods.

Existing production sites have a vested interest in their facilities' competitive position. Investments in the producer's time and resources must address these issues:

- Improve the producer's competitive position.
- · Provide an equal or greater return with less risk than the alternatives.
- · Combined with competitor activities, address a government's responsibilities to community concerns.

GHG specifications

GHG is measured as a carbon dioxide equivalent (CO,e), where chemicals or commodities released into the environment are converted to their CO₂e by a factor specific to that chemical or commodity. Resources for the conversion, are numerous and exhaustive. 4 5 Table 1 shows a few common fuels used in industry. Fuel use is the largest source of GHG emissions.

Unburned fuel in the form of methane (CH₄), nitrous oxides (N₂O), and other contaminants associated with low-combustion efficiency contribute to a fuel's GHG production.

Poor combustion is the primary reason solid fuels (i.e., coal, coke, and waste products) produce three times the CO₂e impact of natural gas, in addition to emitting elevated levels of sulfur and nitrogen oxides (NO). Maximizing the heating potential of any fuel reduces fuel use and CO₂e production. But plant fuel gases containing liquefied petroleum gas (LPG) can have

20% more than the CO₂e of natural gas, in addition to the loss in value compared to the finished LPG product. While a project's focus may lie in the reduction of greenhouse gases, economic justification will remain the driver for implementation.⁶

The next largest GHG emissions issue can be the selection and use of process refrigerants.

Table 2 lists the most common refrigerants and their properties, including values of CO₂e as kilograms of CO₂/kg of refrigerant, normal boiling point, and safety classification.^{7 8} Although the refrigerant system is process-specific, the refrigerant selection is typically based on the process requirements and safety of personnel and property surrounding the equipment.

Table 2 compares the price ratio of a nominal quantity of different refrigerants to R744 (CO₂). Although the service capabilities are different, engineered refrigerants are high-cost compared to a commodity application. Refrigeration systems are estimated to have an inventory loss of 10-50%/year of normal operations.⁹

The equipment CO₂e is a percentage of the total refrigerant inventory. Although direct refrigerant substitution is typically cost-prohibitive, and the power requirements for a process service with different refrigerants can vary, system replacements provide the opportunity to factor the refrigerant cost into the evaluation of different refrigeration systems.

Where possible, system specifications should be reviewed and purchasing decisions made for outside, common-process operations to incorporate process safety with lower refrigerant costs.

Plant fuel gas

Because components in the fuel gas system have a higher value as finished products they are justified for removal with operating changes or investment.

CO ₂ e of Commercial Fuels used N INDUSTRY AND TRANSPORTATION Table 1				
	Natural gas basis			
Natural gas Propane N-butane Regular unleaded Jet fuel No. 2 heating oil No. 6 heating oil Bituminous coal Anthracite coal Petroleum coke Waste tires	52.9 63.1 65.0 70.9 70.9 73.2 78.8 93.5 103.6 113.7 112.8	1.00 1.19 1.23 1.34 1.34 1.38 1.49 1.77 1.96 2.15 2.13		

Priority should be given to management of hydrogen because of its higher value as chemical feed, even with a CO₂e of zero. Hydrogen is typically present in the plant fuel system only from cracked light ends production.

Properly configured production sites have a cascading route for all hydrogen bleed or vent gas streams that contain a 70% or greater concentration of hydrogen. Hydrogen production is costly, and the byproduct stream is eventually a high-volume CO₂ exhaust to the environment. Hydrogen plants can be the highest source of GHG emissions from a typical refinery.

Fig. 1 shows hydrogen and the other components of typical plant fuel gas, including LPG. Hydrogen has displayed a heightened pricing differential to natural gas throughout the past business cycle. Hydrogen price estimates are based on a natural gas feed, steam methane reforming expenses, and a nominal return on operations. Actual prices may vary due to regional valuations and logistics, but the difference noted across all periods can justify operating changes, and investment over half the period.

Fuel gas containing olefins, amine mist, and other reactive compounds can produce sludge that reduces the capacity of fired equipment. An accumulation of sludge will restrict the fuel gas line flow, foul and misalign burner flame patterns, reduce burner capacity, and increase both maintenance and GHG emissions. Combined with scheduled and unscheduled maintenance, light hydrocarbon recovery is a

priority for increasing product yields, equipment reliability, and GHG reduction.

Flare gas

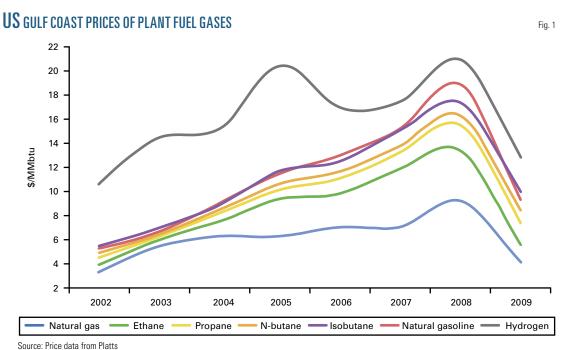
Most large production sites are using flare gas recovery systems to meet emission requirements. Originally designed to scrub flare gases for sulfur compounds before rerouting to fuel gas, the gas stream is typically high

in LPG from leaking tower relief or pressure control values. An exception would be a coker unit drum blowdown system or other intermittent wet gas stream that is predominantly hydrogen, methane, and nitrogen.

Although both systems need removal from the flare, LPG-rich streams should be routed separately to light ends separation for product recovery. The rate and composition of the LPG-rich streams are typically more consistent due to the stream source.

Flare gas recovery systems are also typically operating at capacity as maintenance or a down period is needed to remedy the source of leaks. Repeat maintenance items require a higher specification for modification or replacement before repairing.

Boilers, process heaters


In many installations, fired equipment has evolved into a combination of complex technologies that support responsive air-fuel control with feedback on carbon monoxide (CO) emissions, air and process preheat, NO_x reduction, and a complete emissions-monitoring recorder.

Advanced NO_x reduction technologies that were developed on the West Coast to meet strict clean air initiatives are now expanding eastward. This technology features a combination of ultralow NO_x burners with stack-gas exhaust recycling and real-time emissions reporting to the regulatory agencies. The combination of firing controls and gas recycling needed to maintain design emission capabilities typically

OIL&GAS IOURNAL

General Interest

reduces the fired heater capacity. Because process heaters typically operate at a lower combustion efficiency when at maximum capacity, the equipment revisions needed to reduce NO emissions also limit processing flexibility. Permitting for new construction often requires retrofitting fired equipment to reduce or offset a site's NO emissions. The opportunity for increased firing efficiency and firing capacity is in balance with requirements for lower NO₂ production. Engineered equipment specifications and supplier competence with the existing control systems are a priority for flexible, long-term, reliable operations.

A utility offset is the use of heat recovery systems on existing exhaust stacks or process streams currently routed to the environment or process coolers, respectively. All the principles of thermal pinch with cost considerations for pumping and equipment purchases should be compared. Many high-temperature tower operations allow for overhead duty reductions of 30-50% with interstage tower pumparound duties. High-temperature product streams are also a source for steam generation or additional feed preheat.

Large distillation operations have feed or bottoms heating from fired heaters or steam condensers. Fired heaters have limits on their duty and are typically part of the overall site emissions permit.

Attempts to increase the tower bottoms' temperature to increase product purity or yield of heavier components can be limited. Converting the reboiler to feed heating or adding feed preheat exchange against the bottoms' stream can improve product yields with equivalent or lower GHG emissions rates and a savings in fuel use.

The investment is negligible in comparison to feed or reboiler heater replacement and the possible repermitting requirements. Reboiler duty and associated GHG emissions reductions of 7-10% have been achieved by revising existing configurations.

Catalyst selection

Catalyst improvements continue to prove their worth with reduced operating conditions, higher product selectivity, increased product yields, and extended operating periods between regeneration or replacement. Even the catalyst materials continue to evolve

into recyclable products for reuse or sale, resulting in less material being sent to the landfill.

Some of the most impressive improvements have occurred in the alkylation and cracking zeolite combinations. Long known for their qualities of high activity from a large surface-tomass and reactivemetal content, operations that were once elevated-temperature, vapor phase with catalyst

coking tendencies are now moderatetemperature, liquid phase reactions.

Because these technologies no longer require fired feed heaters, chromemolybdenum reactor metallurgies, and repeated start-ups and shutdowns for reactor switchover or regeneration, there is a marked reduction in product losses. Additional benefits of these technologies include less energy consumption, lower operating costs, and the elimination of the associated GHG emissions. Existing and competing technology licensors provide the options, and alternative catalyst suppliers are typically available.

The marketplace is growing increasingly crowded with a wide variety of catalyst alternatives that provide dramatic increases in desulfurization, denitrification, dearomatization, and other properties required for cleanerburning fuel. Although these catalysts are more expensive, their activity, yields, and extended performance provide reduced preheat and start-up/shutdowns for changeout. Catalyst advances justify their installation and operational investments.

Table 2

Equipment selection

Equipment selected for replacements, modification, or repair must be engineered to the correct specifications to reduce maintenance under anticipated operating conditions. Production maintenance strives for a planned schedule based on equipment monitoring to provide the preventive activities and minor repairs necessary to continue operations that are safe and adhere to environmental rules.

Repeated equipment repair indicates inadequately engineered parts or altered process conditions. Rotating equipment specifications under the American Petroleum Institute provide a baseline for long-term performance, and additional qualifications may be warranted.¹¹

Although equipment decisions are case by case, motor drives, pumps, compressors, and gear-system efficiency generally improve with lower revolutions per minute (rpm) basis friction. Motor efficiency rating is also essential, especially in small motor sizing. Equipment costs are typically the reverse—lower with higher operating rpm and lower efficiency.

Also, oversized, high-efficiency motors operating at a reduced load can—and frequently do—operate as efficiently as smaller, less efficient motors operating at design capacity. The higher-efficiency motors are expected to operate more reliably. Steam turbines, typically smaller sizes or operating at reduced load, can have a fraction of the operating efficiency of a comparable electric motor drive.

Backup service aside, continuous low-pressure, steam turbine driver use should be avoided, and all turbine operations should strive for operation at full capacity.

Intermediate and low-pressure steam turbine drivers can lose efficiency at a rate of more than 0.7:1 at reduced rates. For example, a 30% reduction in driver capacity can cause a 20% loss in efficiency. Equipment selection for reliability, efficiency, and cost consists of an engineering analysis of different

COMMERCIAL REFRIGERANTS USED IN T	HE PROCESS INDUSTRY
-----------------------------------	---------------------

ASHRAE number	KgCO ₂ / kg	NBP¹ (oF.)	Safety class ²	Price ratio
R717 (ammonia)	0	-28	B2	3
R728 (nitrogen)	0	-320	A1	3
R744 (CO ₂)	1	-109	A1	1
R290 (propane)	3	-44	A3	4
R600 (N-butane)	4	31	A3	5
R600a (I-butane)	8	11	A3	6
401A	18	-30	A1	199
401B	15	-32	A1	201
401C	21	-23	A1	204
402A	1,680	-57	A1	227
402B	1,064	-53	A1	362
407C	1,526	-47	A1	213
409A	0	-32	A1	225

¹Normal boiling point. ²Toxicity and flammability classification. Letter refers to toxicity upon exposure (A < 400 weight ppm > B), where B is toxic to exposed personnel. Number refers to flammability, where 3 is the most flammable.

applications for anticipated operations over the equipment life cycle. The outcome of any analysis can differ as the basis for a long reliable or short-term life expectancy.

Varying the drive speed can add efficiency to specific equipment services, but justifying an investment solely on an efficiency basis is difficult unless there are extended periods of underutilization.

Reviewing the market period to date may shift production profitability to product yields instead of increased charge rates with alternative charge stocks. Higher efficiency mechanical operations deserve a review in an underutilized production market scenario.

Fixed equipment, such as exchanger configurations, have design options like bell heads that can reduce purchase costs and leaks and still provide access for cleaning and inspection. Unused vessel flanges, specified as part of standard configurations, provide more leakage points and require monitoring. Improvements such as heater insulation, sealed box closures, roof seals, and optimized heat distribution provide incremental operation and maintenance savings. Numerous areas, ranging from rotating equipment seals to gasket materials, affect product losses, equipment reliability, and operating costs. Advances in equipment technology provide justifiable alternatives.

Production configurations (the flow of a process between equipment) become more complex as a production site ages. Piping or out-of-service equipment left in place and complex stream routings introduce materials and stress into operating equipment outside of the design considerations. The cost of unused lines and equipment left in place is difficult to quantify in product loss, repeat repairs, personnel exposure, and future consequences. Timely removal is always advisable.

Start-up, shutdown

Up-to-date procedures guide safe and environmentally secure operations. But continuous improvements in operations performance have reduced the experience personnel have with start-ups and shutdowns.

Training, timed shortly before a planned start-up, is warranted on large investments with high operating temperatures and pressures, light-ends compression, or other technologies with an extended vent or flaring period. New, revised, and existing production units are implementing procedures that strive to eliminate flaring during start-ups. Planning and creative procedures are essential to incorporate all the site-specific implications.

Production start-up activities begin with planning in the engineering and construction or maintenance phase. Proper planning can reduce start-up time by 25-50% by eliminating rework and unplanned repairs. No set procedure directly applies to all sites because each site has configuration details that must be individually addressed. Operating procedures offer an area for continuous improvement.

Oil & Gas Journal / Sept. 28, 2009

General Interest

Many technologies create a high level of equipment wear during start-up and shutdown. High-temperature/high-pressure reactor circuits, gasification, fluid cracking, and coking, for example, sustain the majority of the vessel and associated piping stress during the expansion and contraction cycle of a start up or shutdown. Extended operations between production interruptions can extend the operating life of the affected equipment.

GHG recovery, sale

Plant operators have a broad menu of possibilities for the recovery and sale of GHGs, each with its own set of considerations. Here are examples:

• LPG in flare and plant fuel gas. In the context of maintenance issues with light ends venting and leaks, LPG in fuel gas seems to continually evolve. The challenge lies in justifying, economically, the changes needed for LPG recovery.

From operational and maintenance standpoints, these justifications include higher operating pressures, peak condenser capacities, and improved product purities. Higher returns also typically result from a minor reprioritization of feeds to saturate and unsaturated gas plants and replacement of natural gas with selected plant gas feed to a hydrogen plant.

Investments worth considering range from increasing existing equipment capacities to installing gas liquids recovery technology that is stream and component-specific. Many regions have an opportunity to capitalize on economy-of-scale operations by combining common product streams throughout adjacent production sites.

- Refrigerants. When refrigeration systems are not in use or are underutilized and service can be consolidated into fewer operating units, units should be deinventoried. Refrigerant handling is equipment-specific, but replacing the refrigerant with another inert material may extend the service life of the equipment if use is seasonal.
 - CO₂ recovery. Aside from combus-

tion flue gases, many production technologies produce a pure CO₂ stream as a byproduct. Hydrogen, ammonia, and certain methanol technologies (from partial oxidation or steam methane reforming followed by a gas separation section) along with certain ethylene oxide technologies provide a stream at ambient condition and, sometimes, elevated pressure. Sources of the highest purity, ambient temperature, and elevated pressure are priorities for cost-effective collection, treating, and transfer for sale.

Road and rail transfers are typically as a liquid, and pipeline transfers are a high-pressure vapor. Production site priorities usually do not include CO₂ recovery operations, so considerations for

AFFECT GAS, COAL		Table 3
CO ₂ e \$/ton*	Natural gas \$/MMbtu	Coal \$/ton
5	0.28	18.33
10	0.56	36.67
20	1.13	73.33
40	2.25	146.67

specialist firms, transfer, or end-user commercials should be evaluated.

Recovery of a byproduct or marketable side stream product typically requires an innovative fit into an aged infrastructure. Most production sites are celebrating 40, 50, or more years of operation across a constrained plot plan. Investment and operating costs to recover GHG for product sales may not be as clear-cut or as feasible as they first appear.

 CO₂ markets. CO₂ markets can be far from large generation sites, requiring expensive transportation options to be factored into recovery costs.
 Enhanced oil recovery opportunities develop as reservoirs age and new or low-cost reservoir replacement opportunities dwindle.

CO₂ injection in specific sites has extended operations by more than a decade, and the volume required is dif-

ficult to assess. Due to the risk and high expense associated with alternative energy sources, CO₂ injection for the recovery of known oil and gas deposits continues to justify investments.

Small markets for purity CO₂ exist everywhere, such as for use as propellant, cleaner, storage agent, water treatment, and additive to agricultural products.

Investment in the operations to reproduce plant-based products continues to grow, spurred, in part, by attractive incentives. The economics for production of renewable fuels becomes more favorable as the price increases for oil products.

Government and industry

Reduction of GHG emissions depends ultimately on a combination of actions undertaken by the government and industry.

Congress is debating legislation that would place a value on CO₂e and set a cash value on the GHG emissions associated with a production site that exceeded a certain cap. When a value is placed on GHG emissions, the cost of the fuel generating that emission can rise by 50-100%.

Table 3 illustrates this point by converting a CO₂e price to units of the fuel purchased.

For industry, long-term decision-making is as important as it is challenging. Projects based on short decision times often result in less-than-desirable outcomes, increased investments, more complex operations and reduced production margins. Successful projects avoid situations that create additional, unnecessary costs for doing business or that force a choice between the best of worse scenarios.

To remain viable in an increasingly competitive market, production operations—either stand-alone or as a unit of a diversified business—must continue to increase product yields and reduce operating costs. Even unique and specialized product lines rapidly find they are just another commodity in a global market.

OIL&GAS JOURNAL

Given these realities, government and business both must embrace a common goal of increasing production efficiency.

References

- 1. http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm.
- 2. http://www.epa.gov/climatechange/policy/neartermghgreduction. html.
- 3. Boder, J.H. "China and US Seek a Truce on Greenhouse Gases," New York Times, June 7, 2009.
 - 4. The Climate Registry, General

Reporting Protocol, Version 1.1, Tables 12.1 and 16.2, May 2008.

- 5. API, 2004, Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, American Petroleum Institute, Washington, DC, February 2004.
- 6. http://www.api.org/ehs/climate/ new/upload/GHG_Reduction_Projects Guidelines.pdf.
- 7. ASHRAE Standard, American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, Ga., Addenda 34a through 34f.
 - 8. Calm, J.M., Hourahan, G.C., "Re-

frigerant Data Summary," Engineered Systems, 18(11):74-88, November 2001.

- 9. The Climate Registry, General Reporting Protocol, Version 1.1, Table 16.3, May 2008.
 - 10. Price data from Platts.
 - 11. http://www.api.org/Standards.

The author

Rick Beaubien has over 20 years of experience in processing technologies and project development. He holds a BS degree in chemical engineering from Texas Tech University and an MBA from Pepperdine University. He is a registered professional engineer in Louisiana.

Salazar to end federal oil and gas RIK program

Nick Snow Washington Editor

US Interior Sec. Ken Salazar beat a US House committee to the punch and announced plans to eliminate the US Minerals Management Service's royaltyin-kind (RIK) program on Sept. 16.

His announcement came during his opening statement to the House Natural Resources Committee in the first day of hearings on a sweeping federal minerals reform bill that its chairman, Nick J. Rahall (D-W.Va.), introduced on Sept 8.

The measure includes a provision ending the RIK program.

"The royalty-in-kind program has been a blemish, in my view, on this department. It is time for us to end it," said Salazar. "It was set up at a time when people felt the department could

Registration

The Global Energy Challenge: Reviewing the Strategies for Natural Gas

in Argentina!

www.wgc2009.com

- Alexey B. Miller Deputy Chairman of the Board of Directors, Chairman of the Management Committee, GAZPROM
- Tan Sri Dato' Seri Mohd Hassan Marican President and CEO, PETRONAS
- Bernhard Reutersberg CEO, E.ON RUHRGAS
- Faisal Al-Suwaidi President and CEO, QATARGAS OPERATING COMPANY
- George Kirkland Executive Vice President, Global Upstream and Gas, CHEVRON CORPORATION
- Tony Hayward Group Chief Executive, BP

- Jean-François Cirelli Vice Chairman and President, GDF SUEZ
- Thomas E. Skains Chairman, President and CEO, AMERICAN GAS ASSOCIATION
- Christophe de Margerie Chairman and CEO, TOTAL
- María Graças Silva Foster Director of Gas and Energy, PETROBRAS
- Chairman, THE JAPAN GAS ASSOCIATION
- Azizolah Ramezani Deputy Minister and Managing Director, NATIONAL IRANIAN GAS COMPANY
- Marcel P. Kramer Chairman of the Executive Board and CEO, **GASUNIE**

GENERAL INTEREST

US Interior Secretary Ken Salazar, second from left, and three other top US Department of the Interior officials listen as House Natural Resources Committee members respond during a Sept. 16 hearing to his announcement that he will end the US Minerals Management Service's oil and gas royalty-in-kind program. Joining Salazar were, from left, Wilma A. Lewis, assistant Interior secretary for land and minerals management; US Bureau of Land Management Director Robert V. Abbey; and MMS Director S. Elizabeth Birnbaum. Photo from DOI.

make more money from selling oil and gas on the open market than in taking royalties. It was created by administrative order, and I intend to end it."

He told reporters following the hearing that it will take about a year to shut the program down because several of its components operate under contracts. "We expect to issue the order in the coming weeks," he said.

MMS Director S. Elizabeth Birnbaum and BLM Director Robert V. Abbey will work with Wilma A. Lewis, assistant interior secretary for land and minerals management, in making the transition from the RIK program to a more transparent and accountable royalty collection operation, Salazar told the committee.

"Bravo, bravo, bravo," Rahall said after Salazar finished his opening statement. "I have called for its elimination for years because it has so many problems."

The program drew especially heavy fire in September 2008 after an investigation by the Department of the Interior's inspector general found federal RIK employees in Denver were paid for outside work, abused drugs and alcohol, and solicited sex.

Different conclusions

Rep. Cynthia Lummus (R-Wyo.) noted that Salazar's predecessor as interior secretary, Dirk A. Kempthorne, formed an independent committee chaired by former Sens. J. Robert Kerrey (D-Neb.) and Jake Garn (R-Utah) which investigated the government's minerals royalty programs and reached different conclusions. One of those was that the RIK program should be scrapped onshore but retained offshore because of significantly bigger takeaway volumes, she said.

Salazar said he was acquainted with the committee's work and would consider its recommendations.

American Petroleum Institute President Jack N. Gerard said the RIK program collected \$6.6 billion in oil and gas deliveries during fiscal 2008 and is one of the federal government's largest sources of nontax revenue. "Terminating this straightforward method of handling royalty payments runs the risk of raising administrative costs and adding additional layers of paperwork required to determine the value of oil and gas production," he said.

Senate Energy and Natural Resources Committee Chairman Jeff Bingaman (D-NM) apparently wasn't surprised, since the Government Accountability Office issued two reports before the hearing calling for major federal royalty management reforms. "GAO's rebuke of the way [DOI] collects royalties is just the latest red flag that the American people are not getting a fair return for the oil and gas resources they own," he said. "We'll be taking a careful look at the administration's proposals to overhaul the flawed royalty management program."

Salazar told the committee that phasing out the RIK program is part of a broader effort to improve minerals royalty collections within DOI. He said Lewis was leading a two-track department-wide minerals royalty policy review of possible administrative and legislative actions. "There's a lot we can do to simplify the collection of federal royalties," the secretary said.

In his written statement, he said the administration has not had an opportunity to fully analyze Rahall's bill, which also includes a provision combining the US Bureau of Land Management and MMS into a single Office of Federal Energy and Minerals Leasing.

Administrative actions

Many of the bill's provisions can be achieved through administrative actions, Salazar told the committee. "For example, I am developing options to improve the coordination between [MMS and BLM] in onshore and offshore leasing and revenue management policies related to domestic energy production, both conventional and renewable, from federal lands," he said. "I intend to bring needed coordination and strategic guidance to the department's energy development programs and to its implementation of significant reforms, including recommendations

Oil & Gas Journal / Sept. 28, 2009

from the reports of the GAO and the Office of the Inspector General."

Republican committee members criticized Rahall's bill and Salazar's actions since becoming interior secretary. "In your time at [DOI], you have essentially blocked energy development across-the-board," Rep. Michael Coffman, a freshman from Colorado, told Salazar. "We can't drill onshore, we can't drill offshore, we can't develop oil shale, we can't develop uranium deposits, and you haven't issued any new solar permits."

Salazar disagreed, citing continued oil and gas lease sales at BLM and MMS and revised oil shale technology assessment programs.

Another GOP freshman, Bill Cassidy from Louisiana, suggested that Rahall's bill creates contradictions in calling for more expeditious oil and gas production while increasing the potential for bureaucratic delays.

"There is room for us to improve," Salazar responded. "Technologies such as horizontal drilling create opportunities today that were not available 30 years ago. We're also aware that several private landowners and oil and gas producers are taking approaches which may be more efficient than the federal government's. We'd like to look into these."

When Robert J. Wittman (R-Va.) asked about the status of a lease sale scheduled off Virginia's coast in 2011 as part of the MMS's 2007-12 OCS plan, Salazar said that DOI was looking at it

but added that there hasn't been new information about Atlantic US offshore resources for decades. "Virginia has the opportunity to be the first new leasing area on the East Coast, not just for conventional but also renewable resources," Wittman said.

"I think one area where you can expect bipartisan support there is natural gas," Salazar replied. "There are indications that there may be substantial amounts out there." Responding to a question about Atlantic OCS leasing in general from Doug Lamborn (R-Colo.), ranking minority member of the committee's Energy and Mineral Subcommittee, the secretary said that more current information is necessary because "what's out there could turn out to be a big nothing." \blacklozenge

Extended OCS comment period produces 350,000 comments

Nick Snow Washington Editor

The US government received more than 350,000 public comments on possible Outer Continental Shelf resource development strategies during the 6-month comment period that expired Sept. 21, US Interior Secretary Ken Salazar said on Sept. 22.

Many of the comments came from public meetings he hosted in New Jersey, Louisiana, Alaska, and California, he said. "I heard broad agreement that we must confront our dangerous dependence on foreign oil, build a clean energy future, and make use of the limited resources we have while protecting our land, water, and wildlife," he said.

Salazar said the US Minerals Management Service is reviewing all of the comments, which will take several weeks. Once that is complete, it will initiate environmental analysis and what he termed "public scoping opportunities" associated with the 5-Year Plan for oil and gas development on the OCS.

"The offshore energy program we are developing must address our nation's energy security challenges, deliver a fair return to the taxpayers who own the resources, and account for the views of local communities, states, and tribal nations," the secretary said.

It also must take several key considerations into account, including ocean areas critical to military training and the national defense; other economic benefits of the oceans including fishing, tourism, and subsistence uses; environmental considerations; existing oil and gas infrastructure; interest from the oil and gas industry; and the availability of seismic and scientific data, he said.

"I am confident that we will be able to expand our nation's offshore energy portfolio by focusing on development in the right way in the right places," Salazar said.

Move aggressively

Meanwhile, oil and gas industry groups urged MMS to move ahead aggressively on developing more OCS energy resources the 6-month public

comment period on a draft proposed 5-year OCS plan expired.

"In about a week's time, we will mark the 1-year anniversary of the end of the moratoria for new oil and natural gas leasing in federal waters off our Atlantic and Pacific coasts," noted American Petroleum Institute Pres. Jack N. Gerard. "Despite the public's clear desire for more domestic energy development and the industry's years of experience operating offshore in an environmentally sensitive way, this administration repeatedly has slowpedaled this plan which would benefit all Americans, especially in these tough economic times."

Gerard said new oil and gas development could create thousands of jobs, add more than \$1 trillion to government coffers, strengthen US energy security, and encourage a domestic economic recovery. "It's time to end the delays. The administration now has comments in hand. It knows that oil and natural gas will be integral to the nation's economy for decades to come. It must act now to ensure that America has the energy it needs today, and in

Oil & Gas Journal / Sept. 28, 2009

Watching Government

Nick Snow, Washington Editor

Blog at www.ogjonline.com

Delivering 'human impact statements'

Committee members found plenty on which to disagree as they began 2 days of hearings on Chairman Nick J. Rahall's (D-W.Va.) federal minerals management reform bill on Sept 16. They probably would have agreed with Interior Secretary Ken Salazar, who was there to testify, that Rep. Rob Bishop (R-Utah) was the most passionate during his allotted 5 min for questions.

Bishop had a lot on his mind. He started with questions about contacts between the National Parks Service and the National Parks and Conservation Association. He reiterated his criticism of Salazar's Feb. 6 order to cancel 77 oil and gas leases in eastern Utah that the US Bureau of Land Management auctioned in December.

Then he asked Salazar to turn around so he could see a man and a woman standing together near the press table. Jeremy and Amber Harrison had come from Vernal, Utah, to present 150 "human impact statements" about the lease cancellations to Deputy Interior Secretary David J. Hayes the day before, Bishop explained.

He said Hayes' office notified them that the appointment had been cancelled and that the DOI official would not be able to see them at all that week. So Bishop brought them to the hearing.

'They're individuals'

"These aren't oil and gas producers or special interest groups. They are individuals who were directly affected by your decision," he told Salazar.

"What happened to those 77 lease parcels you're so passionate about is

that the [US Bureau of Land Management] did not conduct proper consultations about them. Those are taking place now, and several of them may be offered in the future," the secretary responded.

But he also essentially apologized to the Harrisons. "Periodically, the federal government acts without considering the trouble individuals like them take to express their views in person," he said during the hearing. He met with the couple in the hallway afterward and told them they could meet with someone at DOI that afternoon.

Downturn's cause

OGJ also spoke with the Harrisons, who own and operate an oil hauling truck. They said unlike previous downturns that had been caused by companies canceling major projects, this one occurred because of an official's decision in Washington.

Salazar's move came after a consultant completed an extraction industry impact study for Uintah County in November 2008 to attract more oil field service firms, Amber Harrison said. "As soon as his decision was publicized, companies started to pull out instead," she noted.

Unemployment in the county has climbed to 8% now from around 1% a year ago, she added.

Salazar kept his word. The Harrisons met that afternoon with Hayes and BLM Director Robert V. Abbey. "It went well. It was a little easier to get our points across to Mr. Hayes one-on-one" and Abbey seemed very willing to listen, Mrs. Harrison told OGJ by telephone on Sept 21. ◆

the future," he said on Sept. 21.

In comments submitted to MMS on Sept. 15, Independent Petroleum Association of American Pres. Barry Russell warned: "As our nation's energy demand continues to increase, a failure to provide needed access to the OCS will increase domestic energy prices, slow US economic growth, and create hardships for consumers."

"The next 5-Year Plan will define the shape and scope of domestic offshore energy development. It is essential that MMS develop a leasing program that provides maximum flexibility for our nation to address its energy needs," Russell said.

Prompt review

National Ocean Industries Association Pres. Tom Fry urged US Interior Secretary Ken Salazar to review the comments promptly and analyze all OCS planning areas now that the 6-month comment period extension the secretary imposed on Feb. 10 has expired.

"Today's volatile energy prices and supplies have created many problems for ordinary Americans. In part, this is because the government has denied access to energy resources owned by the American people," Fry said on Sept. 21. "The energy resources on the OCS are vital to the nation's economic prosperity, and safety records show that they can be produced in an environmentally responsible manner."

Jenny Fordham, energy markets and government affairs director at the Natural Gas Supply Association, said the draft proposed plan (DPP) was a step in the right direction "and industry supports a robust plan as a foundation to our future domestic energy supply." She said, "MMS should not delay the 5-Year Plan process, but should move forward quickly after the close of the comment period to develop the proposed plan and complete the necessary environmental work."

In comments submitted to Renee Orr, MMS's 5-Year Plan program director on Sept. 21, Fordham said NGSA

Oil & Gas Journal / Sept. 28, 2009

MANAGING THE WAVES OF CHANGE

November 10 – 12, 2009 Moody Gardens Hotel and Convention Center Galveston. Texas

CONNECT WITH OPERATORS WHO MAKE DECISIONS!

As deepwater production becomes increasingly more complex and expensive, companies are seeking innovative solutions to better handle operational challenges. The Deepwater Operations Conference and Exhibition is the industry's foremost event for showcasing new technologies and solutions, featuring a comprehensive conference program held simultaneously with an exhibition displaying a multitude of products and services.

Book your exhibit space now and take advantage of this unique opportunity to exchange information about key topics affecting start-ups, deepwater integrity management, emergency response, regulatory issues, cost management, and more, while generating top-quality sales leads.

The conference and exhibition will be held November 10 - 12, 2009at the Moody Gardens Hotel and Convention Center in Galveston, Texas. To book your exhibit space today or to inquire about sponsorship opportunities, contact your regional sales representative or visit www.deepwateroperations.com.

"This conference has filled a real need in the industry; a forum for sharing deepwater production operations practices and lessons learned among operators and contractors on a global scale."

Mike Autin **BHP Billiton Petroleum**

FOR EXHIBIT AND SPONSORSHIP INFORMATION, CONTACT:

Sue Neighbors (Americas)

Phone: +1 713 963 6256 Fax: +1 713 963 6212

Email: sneighbors@pennwell.com

Jane Bailey (Northern Europe)

Phone: +44 (0) 1992 656 651 Fax: +44 (0) 1992 656 700

Email: janeb@pennwell.com

Ana Monteiro (Southern Europe)

Phone: +44 (0) 1992 656 658 Fax: +44 (0) 1992 656 700 Email: anam@pennwell.com

WWW.DEEPWATEROPERATIONS.COM

Owned & Produced by:

Flagship Media Sponsors

GMags

GENERAL INTEREST

was pleased that MMS added areas not included in previous 5-year OCS plans to this one's DPP, including lease sales in the eastern Gulf of Mexico "which is known to contain vast resources of natural gas." The industry association supports the proposal of 31 lease sales with no restrictions, such as buffer zones, and encourages MMS to prioritize the schedule of lease sales to be held in those areas known to have the highest resource potential, she said.

The federal government locked up OCS areas believed to contain 18 billion bbl of oil and 77 tcf of gas for more than 20 years, Doug Morris, API's upstream and industry operations group director, noted in comments that API submitted to MMS on Sept. 21.

'May be conservative'

"These resource estimates may be conservative since the areas in question are largely unexplored," Morris said. "But if given access to them, the industry could use today's highly sophisticated technology to locate and tap new domestic resources in an environmentally responsible manner as it has in other areas for decades."

Past decisions to restrict OCS acreage available for exploration compelled the oil and gas industry to "pick over the bones" in search of commercial hydrocarbon quantities, Morris said. He cited expenditures of \$2.2 billion for leases in 1996-97, with only 6% of the tracts eventually producing oil and gas and the remainder returned to the government. "Over 50% of the leases

were eventually resold in subsequent sales for an additional \$6.2 billion as the industry continued to search for the 'needle in the haystack' in a limited geographic area using new exploration technologies," he said.

Morris conceded that successive exploration over some of the same areas led to new discoveries because new geologic concepts were tested, aided by the evolution of exploration and production technologies. "Nevertheless, over the period that moratoria restricted access to as much as 80% of the OCS, other opportunities for discovery went unexplored and untested," he said.

Access to areas where technologies and concepts can be tested, and where lessons learned from exploration elsewhere in the world can be applied, will increase the likelihood that new domestic offshore oil and gas resources will be discovered and domestic energy security improved, Morris said. "We will continue to rely on oil and gas in the long term, so we need to make decisions now that provide us with the resource in the long term," he said.

Include all areas

In IPAA's comments, Russell urged MMS to keep all areas, including the eastern Gulf of Mexico, Alaska, and the entire Atlantic and Pacific OCS under consideration during the planning process's next phase. Doing so would mean that "essential preparatory work will have been completed enabling that area

to be offered for leasing more quickly should Congress mandate a sale," he said.

Russell also suggested that MMS use area-wide lease sales wherever possible, and focused leasing for places where it is not. "Area-wide leasing allows IPAA members, the smaller independent companies, to actively acquire, explore, and produce low-risk fields. It also encourages innovative exploration strategies and is consistent with maintaining financially sound geophysical contracting and processing industries," he said.

Fordham said in NGSA's comment that the association also was encouraged by MMS's including areas previously off-limits in the DPP. NGSA and API separately expressed in their submissions to MMS their opposition to the idea of coastal buffer zones and support for sharing new federal OCS oil and gas revenues with states directly feeling the impacts of development.

Morris and Fordham each noted that in August 2008, when MMS requested comments as then-Interior Secretary Dirk A. Kempthorne accelerated the OCS planning process to produce a 5-Year Plan for the 2010-15 period, some 60% of the responses said that the agency should initiate a "new program to provide some level of expanded access to domestic sources of oil and natural gas." It was a significant indication that the general public understood the importance of developing more domestic oil and gas supplies, the API and NGSA officials separately said. ◆

Tighter OTC derivative oversight needed, House panel told

Nick Snow Washington Editor

Regulation of over-the-counter derivatives is essential as the US government tries to prevent market manipulation, the chiefs of two key financial regulatory commissions told the US House Agriculture Committee on Sept. 22.

Noting that a year has passed since the domestic financial system nearly collapsed as several major investments through complicated financial instruments went sour, US Commodity Futures Trading Commission Chairman Gary G. Gensler and US Securities and Exchange Commission Chairwoman Mary C. Schapiro each said the lack of OTC derivative market regulation was only one of several serious weaknesses in US financial regulation.

But it was a significant weakness and it should be corrected, they continued. "It is critical that we work together to enact legislation that will bring greater transparency and oversight to the OTC derivatives market," Schapiro said in

Oil & Gas Journal / Sept. 28, 2009

her opening statement. "The derivatives market has grown enormously since the late 1990s to approximately \$450 trillion of outstanding nominal amount in June 2009."

Gensler said comprehensive OTC derivate market reform will require two complementary regimes: one for derivatives dealers and one for the markets themselves. "This regulatory framework must cover both standardized and customized swaps. It should include all the different products, such as interest rate swaps, currency swaps, commodity swaps, equity swaps, and credit default swaps, as well as all of the derivative products that may be developed in the future," he said.

"We should eliminate exclusions and exemptions from regulation for OTC derivatives. Congress should extend the regulatory regimes of the Commodity Exchange Act and the federal securities laws to fully cover OTC swaps in all commodities," Gensler said, adding, "I believe that the law must cover the entire marketplace, without exception."

Impetus for reform

Congressional and other critics of the current system have contended that speculators used financial swaps and other instruments during 2008's first half to drive oil prices to a record peak after moving their money from a crumbling domestic real estate investment arena. The US Department of the Treasury sent legislative language to Congress on Aug. 11 that would institute regulation of all OTC derivatives. Oil and gas as well as other industries have argued that regulating commodities too strictly could reduce their ability to hedge prices and drive their operating costs higher.

"Public gas systems depend upon both the physical commodity markets as well as the markets in OTC derivatives to meet the natural gas needs of their consumers," David Schryver, executive vice-president of the American Public Gas Association, told the House Agriculture Committee Sept. 17 at an earlier commodities market reform hearing. "By using both markets, these public gas systems are able to purchase firm deliveries of gas from a diverse set of suppliers while hedging the risk of future market price fluctuations."

Proposals to require all standardized OTC derivatives to be cleared (which Gensler said he supports on Sept. 22) would make it much harder for municipal and other public gas systems to use these gas supply strategies, Schryver continued.

Many APGA members with very high credit worth are not required to post collateral for an agreed-upon number of transactions under the current system, he explained. Mandated clearing of all OTC transactions would require them to post an initial margin for all transactions and to meet potential margin calls whenever required on little notice, putting a significant financial burden on the systems and the communities and customers they serve, Schryver said.

He and other witnesses said at the Sept. 17 hearing that while they recognize the need to impose position limits and other restrictions to prevent excessive commodities speculation, exemptions also will be needed in many cases for market participants which are trying to control their fuel or feedstock costs.

Unaffordable costs

"Our primary concern with the Treasury Department's proposal is that it would require most of our transactions to be cleared since our natural gas trades would be considered 'standardized,'" said Glenn English, president of the National Rural Electrical Cooperatives Association. Emphasizing that the group does not want to hedge in an unregulated market and wants derivatives trading to transparent and free of manipulation, he said that most rural electrical co-ops would be able to continue hedging if all derivatives contracts must be cleared.

"Commodity markets were created for the benefit of physical hedgers, and they must continue to remain accessible to them," said Richard B. Hurst, senior vice-president and general counsel for Delta Air Lines Inc., who also testified on the American Air Transport Association's behalf. "In a trade where at least one party is a legitimate physical hedger in a commodity, the committee should consider provisions that would enable these transactions to occur with little additional financial burden on the parties involved."

Jon Hixson, federal government relations director at Cargill Inc., said the food and agricultural service company's businesses include risk management products for bakeries, restaurants, and heating oil suppliers.

"Under the Treasury Department's proposal, it is highly likely that Cargill would be forced to greatly reduce, if not eliminate, offering our customers these risk management solutions....

In addition, we would expect prudent hedging to decline significantly in those situations where Cargill, like other end-users, manages its own commodity, interest rate, and foreign exchange risks due to the imposition of mandatory margining and the drain on working capital," he indicated.

But Gensler, at the Sept. 22 hearing, said CFTC should have authority to set aggregate position limits across all markets and trading persons on traders of OTC derivatives which perform or affect a significant price discovery function in markets that the commission oversees. "This will ensure that traders cannot evade position limits by moving to a related exchange or market," he told the committee. "Exemptions to position limits should be limited and well defined."

More transparent

Moving standardized OTC trades onto regulated exchanges and trade executive facilities would make markets more efficient and transparent, Gensler said. "Exchanges greatly improve the functioning of the existing securities and futures markets. We should bring the same transparency and efficiency to the OTC swaps markets," he said.

OIL&GAS OURNAL

NERAL INTERES

Schapiro said Congress should consider modifying the Treasury Department's proposal so that securities-related OTC derivatives are regulated like securities, and commodity and other non-securities-related OTC derivatives are treated like futures.

"At the core of this approach is that similar products should be regulated similarly, or equivalently, if possible," Schapiro explained. Oil and gas swap contracts or other commodity-related OTC derivatives would be regulated in a manner similar to the underlying oil and gas or other futures, she said.

Meanwhile, US Sen. Maria E. Cantwell (D-Wash.) introduced a bill on Sept. 17 that she said would make it easier for CFTC to investigate and punish alleged commodities market manipulation. The measure, which was cosposored by Sen. Bill Nelson (D-Fla.), would replace the requirement for the commodities regulator to prove "specific intent" to do harm with the same "reckless conduct" standard which the SEC has used for 75 years, and the Federal Energy Regulatory Commission and Federal Trade Commission recently adopted, she said.

"When bad actors like Enron and Amaranth Advisors manipulate commodities prices, Americans end up footing the bill, paying more for commodities like oil, gasoline, heating oil, food, and natural gas," Cantwell said. "Unfortunately, regulators lack the tools to protect us from market manipulation in critical commodity futures markets. Through this tough new language, we can establish a clear, bright line against illegal market manipulation and can empower regulators to effectively enforce and deter market manipulation." ◆

House panel told leasing bill would hurt development

Nick Snow Washington Editor

A bill that aims to make federal oil and gas leasing more effective and efficient would have the opposite effect instead, two oil and gas industry officials told the US House Natural Resources Committee on Sept. 17.

"We believe that it is important to develop policies that provide more access to federal lands and remove barriers that delay the development of these resources," said Doug Morris, group director for upstream and industry operations at the American Petroleum Institute. "We should not be erecting additional obstacles to development which, unfortunately, would be the unintended consequence of this legislation."

Alex B. Campbell, vice-president of Denver independent Enduring Resources LLC and a board member of the Independent Petroleum Association of Mountain States, said HR 3534, which committee chairman Nick J. Rahall (D-W.Va.) introduced on Sept. 8, would create delays with new layers of bureaucracy and regulations.

The measure also would institute policies that would make markets less efficient and leasing less transparent, significantly increase oil and gas production costs on federal lands, and fundamentally change the US public lands' multiple use concept to an approach that would further restrict renewable as well as conventional energy development, he warned.

Morris said API and its members are concerned about Rahall's bill because it would create more layers of bureaucracy that could slow leasing down. "For example, it has the potential to interfere with the [US Outer Continental Shelf] 5-Year Leasing Plan process that has worked well for 30 years," he said.

Several components

"This process includes three separate public comment periods, two separate draft proposals, development of an environmental impact statement, and the final proposal. Even after the [Interior] secretary approves a final program, there is a lengthy public comment period for each lease sale that includes consultation with stakeholders at several stages and additional environmental analysis," Morris said.

Unfortunately, HR 3534 would create new regional planning councils, which apparently mirror many activities already being performed as part of MMS's development process for each 5-year OCS plan, he continued. "Furthermore, these councils have the

potential to interfere with OCS development since leasing cannot occur if regional plans do not identify an area as being suitable for oil and gas leasing," the API official said. "By vesting this authority within regional councils, the bill could very well put areas effectively under moratoria for years to come."

He also questioned provisions in the bill eliminating the US Minerals Management Service's royalty-in-kind program (which US Interior Secretary Ken Salazar said he would phase out when he appeared before the committee on Sept. 16) and categorical exclusions from auditing requirements authorized under the 2005 Energy Policy Act.

"Problems with the management of these programs, whether perceived or actual, can and should be addressed by the Interior Department," said Morris. "Elimination of programs that have so much potential to increase efficiency is both unnecessary and unwise."

He and Campbell separately questioned the bill's diligent development requirements. "This provision displays a lack of understanding of the oil and gas exploration and production business," the Denver independent said. "Vast differences in geology, topography, reservoir characteristics, composition of the resource, environmental considerations, market conditions,

Oil & Gas Journal / Sept. 28, 2009

transportation of the resource to market, and many other factors make each oil and gas lease unique."

Acquiring capital

The business's financial aspect also is critical in determining when, where, and how a property is developed, he continued. Acquiring the necessary capital to develop properties is a neverending activity for upstream independents, he explained.

Observers from outside the oil and gas industry sometimes confuse nonproducing and inactive wells, Morris said. "Even if a well isn't producing, companies may be committing significant amounts of money for geophysical studies and other evaluations," he said.

When House Natural Resources Committee member Michael Coffman (R-Colo.) asked if lease protests were common, Campbell said that all the tracts which the federal government sold last year in Utah attracted protests. "I have one Utah lease, the Rock House project south of the already existing Natural Buttes field, where I've spent \$30 million since 2004 while it has been tied up in litigation," he said.

The bill contains a provision that would require producers to notify not just surface landholders directly involved in split estate situations but also possibly adjacent surface land owners, he indicated. "This provision would create serious title uncertainty risks. While oil and gas producers are accustomed to evaluating the geologic and engineering risks of drilling a well, they are not willing to invest millions of dollars to purchase a lease or drill a well in the face of clouds on the title," he said.

In an interview after the hearing, Campbell said he was aware of the US Bureau of Land Management's effort to have producers provide surface landholders' names when proposing tracts for possible inclusion in future federal lease sales. He conceded that it would be additional work to look up the information, but added that most producers try to develop a good working relationship with surface landholders before applying for drilling permits.

Typical cost

"A typical well in Utah will cost me \$3-4 million for leasing, surface preparations, drilling, completion, fracturing, and connection to a pipeline," he told the committee. "If I have to choose between leasing a private property and one on federal land with too many restrictions, I'll choose the private property."

Other hearing witnesses said the bill attempts to address problems that need to be corrected. Danielle Brian, executive director of the Project on

Government Oversight, said that HR 3534 attempts to end a requirement for federal auditors and other compliance and enforcement personnel to report to officials whose responsibilities also include leasing and development, "and who may be more inclined to make the royalty management program look successful rather than be successful."

The bill also would end heavy reliance on compliance reviews instead of audits and try to get MMS to improve its computer system so it could identify instances where producers fail to report revenue or royalties at all, she noted.

Stephen B. Smith, the mayor of Pinedale, Wyo., said that while the measure does not fully address socioeconomic impacts from a major energy development such as the Jonah natural gas field near his community, it would require federal lessees to use best management practices. "The use of best available technologies should be required for all energy development on federal lands," he said.

"Producers in our area are currently moving in that direction, using some natural gas-burning engines for drilling and introducing a liquid gathering system on the Pinedale anticline," he continued. "These are two examples of voluntary and proactive steps taken by some operators. We hope they will continue." 💠

Indonesia awards exploration rights for blocks

Eric Watkins Oil Diplomacy Editor

Indonesia has awarded five oil and natural gas blocks to several companies, aiming to increase oil and gas reserves and to lift dwindling production.

"The companies will drill three exploration wells. We believe those areas have hydrocarbon potential," said Evita Legowo, director general oil and gas at the ministry of energy. A total investment of \$91.5 million has been

committed for the projects in the first 3 years.

Indonesia awarded exploration rights to Talisman Energy Inc. for Andaman III block off North Sumatra, while Indonesia's state-owned PT Pertamina and Malaysia's Petronas won exploration rights to West Glagah Kambuna, off North Sumatra.

A consortium comprised of Niko Resources and Black Gold Energy won rights to the three remaining blocks: Halmahera Kofiau, off South Halmahera; East Bula, off of Seram; and West Papua IV, off of Papua.

Indonesia has been offering exploration rights and financial incentives for oil fields in a bid to stem a steady decline in production, but this year's efforts have not been entirely success-

Officials said Indonesia failed to attract enough investors to develop all the blocks offered in this year's first quarter due to the global economic slowdown and concerns over revisions to the cost

Oil & Gas Journal / Sept. 28, 2009

ENERAL INTEREST

recovery mechanism.

Of the 16 oil and gas blocks offered between December 2008 and April of this year, only five blocks won developers, according to the final results of the bidding process announced Sept. 11 in Jakarta.

Should the situation persist, the government will be in serious trouble due to its inability to meet oil production targets amid soaring demand that has already made Indonesia a net importer of oil and oil products.

"This is very bad, but this is the fact. If the situation remains like this, my objective to maintain national oil production at about one million b/d cannot be achieved," said Legowo.

Legowo cited two main factors hampering investors' interests in bidding for the blocks: the global liquidity crisis and the government's plan to revise the cost recovery mechanism.

Indonesia has turned into a net oil

importer in recent years as production has dropped due to the failure to tap new fields fast enough. Indonesia also is Asia's largest importer of oil products, with Pertamina's nine refineries able to supply less than 70% of domestic oil product consumption.

Due the lack of refining capacity, a Pertamina official earlier this month said the state firm expects the country's gasoline imports to more than double from existing levels by 2017.

The official, who spoke on condition of anonymity, warned that annual domestic gasoline consumption would climb to 192.7 million bbl in 2017, from a forecast 123.8 million bbl in 2009.

He said Indonesia's refineries can only produce 68.5 million bbl/year of gasoline, so imports would have to rise to 124.2 million bbl in 2017, from 55.3 million bbl in 2009.

"If Indonesia wants to cut gasoline

imports, it must build new refineries as quickly as it can," the official said.

Meanwhile, Pertamina said it expects to import about 5.6 million bbl of gasoline and 3.6 million bbl of diesel in October, down slightly from the figures for September.

The state firm earlier said it planned to import 5.8 million bbl of gasoline, and 3-4 million bbl of diesel in September in an effort to boost supplies for the Muslima holidays of Ramadan and Eid al-Fitr.

Eid al-Fitr, which marks the end of Ramadan, takes place from Sept. 21-22.

Agustiawan also said the company currently has 20.9 days of gasoline stocks and 25 days of diesel stocks.

"We will secure domestic oil products supply, especially during Ramadan and Eid al-Fitr," said Karen Agustiawan, Pertamina's president director, who added that "Gasoline and diesel imports are expected to be normal in October." ♦

Gazprom launches new stretch of Kaliningrad gas line

Eric Watkins Oil Diplomacy Editor

Russia's state-owned natural gas monopoly OAO Gazprom, meeting the demand of the Russian government, has completed the construction of the second stretch of the 139-km Minsk-Vilnius-Kaunas-Kaliningrad gas pipeline.

"The Russian government tasked Gazprom with guaranteeing the supply of 2.5 billion cu m of gas to the Kaliningrad region in 2010," said Gazprom Deputy Chief Executive Officer Valery Golubev.

"The existence of the two-stretch pipeline and a compressor station, which will be commissioned near Vilnius next year, allows us to say that the set goal will be achieved," Golubev said.

The pipeline expansion is part of a Russian government action plan aimed at increasing supplies to Kaliningrad—a Russian enclave between Lithuania and

Besides the pipeline, the plan also calls for the upgrading of gas metering stations and for construction of a compressor station near Vilnius and an underground gas storage facility at Kaliningrad.

"The new gas pipeline will also increase the reliability of gas supplies to Lithuania, open up new prospects for more intensive development of gas-distribution networks in the republic, and increase gas deliveries to Lithuanian consumers," Golubev said.

Pipeline 'essential'

Viktoras Valentukevicius, head of Lithuania's gas company Lietuvos Dujos, 38.9% owned by Gazprom, said the pipeline was essential for his country.

"Natural gas will become a key energy resource for our country for decades. This line is very important for Lithuania as a guarantee of stable energy supplies from Russia," said Valentukevicius.

In December, Lithuania will close its Soviet-era reactor in Ignalina, which will transform the country from a net energy exporter to an energy importer.

Since Lithuania has no direct link to Europe's electric power grid, it has no choice but to import more energy from Russia—a matter that leaves many Lithuanians apprehensive, especially given Russia's recent decision to cut off supplies to other countries in the

"Vilnius should not forget that the Kremlin is using Gazprom not only as [an] economic [tool], but also a very efficient political tool," said Raimundas Lopata, director of the International Relations and Political Science Institute in Vilnius.

While acknowledging the con-

Oil & Gas Journal / Sept. 28, 2009

cerns of Lithuanians about the reliability of Russia as a supplier, analyst IHS Global Insight felt the new line represents a step in the right direction for the country's energy security.

"The additional gas supplies that can be delivered via the new string of the Minsk-Vilnius-Kaunas-Kaliningrad pipeline will be a net benefit to Lithuania, even if the Baltic state is not yet entirely convinced," IHS Global Insight said.

LNG to Lithuania

Meanwhile, Golubev said Gazprom is prepared to supply LNG to Lithuania if a regasification terminal is built at the Baltic Sea port of Klaipeda.

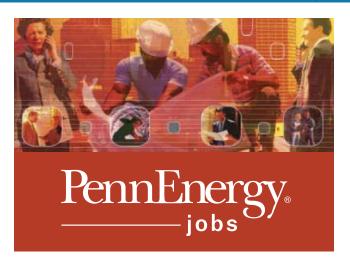
"We regard this project as a very interesting, promising direction. It is needed now. We have discussed this issue and we believe that it is very good that countries are building such terminals," said Golubev, who added that Gazprom believes it is necessary to build a gas pipeline link to Klaipeda.

In September, Lithuania and the US agreed that the US Trade and Development Agency (USTDA) would provide an \$800,000 grant to conduct a feasibility study for an LNG import terminal in Lithuania.

The study will determine the possibility of building a terminal with a capacity of 1.5-2 billion cu m of LNG and will evaluate three potential sites, including one offshore.

According to current plans, the terminal will be 80% state owned, with the remaining 20% to be held by AB Achema, a private producer of nitrogen fertilizers and chemical products.

According to a statement by a Lithuanian economy ministry official, construction of the terminal could start 3-4 years after the completion of the feasibility study, which is expected in 2010.


Lithuania's Energy Minister Arvydas Sekmokas recently said his country is looking for a strategic investor in the terminal from a foreign country "rich in natural gas." ♦

OIL & GAS JOURNAL **REPRINTS**

Reprints of any article or advertisement appearing in Oil & Gas Journal may be purchased by contacting

> Reprint Dept., PennWell 1421 S. Sheridan, Tulsa, OK 74112, 1-800-216-2079

Minimum order: 100 black-and-white copies; 100 four-color copies.

Learn Why...

You Should Post Your Resume on PennEnergyJOBS.com

PennEnergyJOBS is a member of the PennWell family, a global media company with experience in the energy industry dating back to 1910. We know the energy industry and everyone in it. Our mission is simply stated: Connect the leading industry employers with the best talent the industry has to offer. Let us help you.

FREE Resource!

Job Seeker Tools

- Post Resumes/CVs
- Search Jobs
- · Career Ignition Blog
- Career e-Newsletter
- Energy Workforce Career Guide
- Job Tip Videos
- Career Fairs
- · Global jobs for global job seekers

Take the next step to a great career. Log on to PennEnergyJOBS.com today!

Post. Search. Work!

PennEnergyJOBS.com

Oil & Gas Journal / Sept. 28, 2009

Discovery off Sierra Leone

may set up 700-mile play

Alan Petzet

OGJ Chief Editor-Exploration

EXPLORATION

The 45 ft of net hydrocarbon pay cut by an Anadarko Petroleum Corp.operated deepwater exploratory well off remote Sierra Leone was only part of a "tremendous amount" of reservoirquality rock the well penetrated, company officials said.

Anadarko and partners were still logging the Venus well Sept. 16, had not yet seen analyses of hydrocarbons

recovered to surface by a modular formation dynamics test (MDT) tool, and were still receiving 3D seismic shot off Liberia to the east. The discovery is a

technical success and could be highly commercial, they said.

It also appears to set up an exploration play that stretches 700 miles or more to the east along the coasts of Sierra Leone, Liberia, Ivory Coast, and western Ghana where giant Jubilee field and others have been discovered.

Anchoring a conference call on Venus that formed the basis for this article were Anadarko's Al Walker, chief operating officer; Bob Daniels, senior vice-president, worldwide exploration; and Frank Patterson, vice-president, exploration.

Stacked fan-channel complex

All information from the well "is very positive for the exploration effort in the Liberian and Ivorian basins," including fan systems, petroleum system, thermal maturity, and migration, said Daniels. The well proved the fan systems get better coming off the craton.

In the Venus well Anadarko saw good reservoir quality in numerous sands and shows in numerous sands. Nine wells previously were drilled on the shelf off Sierra Leone, and Venus validated the geological parameters of the depositional model that are going to help the company and its partners set up the rest of the play, they said.

After the group drilled to the originally prognosed 5,000 m, the well was still in fans and seeing hydrocarbon

shows and the group elected to continue to the final TD of 18,500 ft.

Venus findings

The well found a combination stacked channel and fan complex, and both facies can be productive, Anadarko said.

One source rock encountered in the Venus well is immediately adjacent to reservoirs, and the area could contain other source rocks not yet penetrated, the company said.

A lot of data are still to be collected to determine where to drill the next well at Venus, but a dip rate of 2-7° indicates that areal extent of the reservoirs could be quite large. Areal extent, still to be determined, will become clearer after well and log data are tied with existing 3D seismic data.

Anadarko didn't reveal the geothermal gradient but said it shows that the kitchen is kicking out large amounts of hydrocarbons.

The drillsite is not at each zone's optimal location on the prospect. Rather, the well is in the best position to obtain as much data as possible on the multiple targets in the stratigraphic section to be penetrated, Anadarko said.

Play elements

Anadarko's goal is to drill opportunities to discover more than 150 million to more than 1 billion gross barrels of oil equivalent, and it sees multiple such features on all of the 10 blocks in which it participates off the four West African countries.

Anadarko was able to obtain a majority of the best acreage off the four countries and had done enough preparatory work to know what acreage to pursue and which to avoid. Even so, it might show interest in a few more blocks, and Venus has substantially derisked the acreage, the company said.

After completing work at Venus, the rig will drill the South Grand Lahou prospect off Ivory Coast in the western part of the Ivorian basin. The South Grand Lahou fan system looks like giant Jubilee oil and gas field off Ghana

Liberia to gather ultradeepwater seismic

Liberia plans to announce an ultradeepwater licensing round after it acquires 15,000 km of 2D seismic, gravity, and magnetic data.

National Oil Co. of Liberia (NOCAL) has let a \$16 million contract to TGS-NOPEC Geophysical Co. to collect the data in as much as 4,000 m of water, Dr. Fodee Kromah, president and chief executive officer of NOCAL told OGJ in an exclusive interview.

TGS will start the work later this year provided there is enough industry

interest. Offshore Liberia has attracted significant industry attention due to recently announced discoveries in the Gulf of Guinea and Sierra Leone.

Earlier this month, NOCAL opened its third petroleum bidding round covering five blocks, which will close on Nov. 30. A ceremony to open bids for blocks LB-1, LB-2, LB-3, LB-4, and LB-5, is set for Dec. 1. NOCAL is offering production sharing contracts that expected to be signed by June 2010.

Kromah told OGJ that despite the

downturn and global recession, he was confident that Liberia would attract interest in its blocks, which each span 3,000 sq km and lie in as much as 3,000 m of water.

Liberia is not an oil and gas producer. "We planned this round before hearing of Anadarko's discovery off Sierra Leone and there is a lot of interest," he said. "Liberia and Sierra Leone are in the same basin."

Kromah added that no date could yet be given for the deepwater licensing round until it had received the information from TGS-NOPEC.

did before it was drilled, Anadarko said.

The rig will then move to drill the Windjammer prospect off Mozambique (OGJ Online, June 25, 2009).

Venus preliminaries

Anadarko plans to drill two to five wells in 2010 in the Gulf of Guinea Cretaceous Trend.

Venus B-1, the first deepwater test in the Sierra Leone-Liberian basin, went to 18,500 ft in 5,900 ft of water on Block SL 6/07 about 55 miles from Liberian waters.

Venus is one of more than 30 pros-

pects and leads Anadarko has identified on its West Africa acreage position. That includes interests in nearly 8 million acres on 10 blocks off the four countries. Anadarko operates seven of the blocks and the majority of the prospects with 40% average working interest.

"With Jubilee (off Ghana) on the east and Venus on the west, we have established bookends spanning approximately 1,100 km (700 miles) across two of the most exciting and highly prospective basins in the world," said Daniels.

Sierra Leone and Liberia have no oil

or gas production. Venus is near the northwestern end of a 3,700 sq km 3D seismic survey on blocks SL 6/07 and SL-7 off Sierra Leone. That survey adjoins a 6,000 sq km 3D seismic survey on Blocks LB-15, LB-16, and LB-17 off Liberia. Seismic shooting is under way on Block LB-10 off Liberia.

Venus is also 850 miles south of oil and gas discoveries in the Atlantic off Nouakchott, Mauritania (see map, OGJ, Oct. 23, 2006, p. 38).

Interests in Venus are Anadarko 40%, Woodside Energy Ltd. and Repsol YPF SA 25% each, and Tullow Oil PLC 10%. ◆

Repsol YPF confirms large gas find off Venezuela

Repsol YPF SA confirmed earlier reports that it has made a giant natural gas discovery off Venezuela.

The company, in an exploration partnership with Italy's Eni SPA, said the Perla-1 well could hold 7-8 tcf of gas in place and said that further tests would be needed to determine the discovery's exact size.

The gas was discovered on a 924 sq km exploration block called Cardon IV, which the Spanish firm began exploring in 2006 along with Venezuela's state-owned Petroleos de Venezuela SA (PDVSA).

Oil & Gas Journal / Sept. 28, 2009

The block was one of three that drew bids in the October 2005 Rafael Urdaneta Phase A license round in the eastern Gulf of Venezuela. Three more blocks drew bids in Phase B in November 2005.

Repsol YPF and Eni would have stakes of 32.5% each in future production, while PDVSA would get 35%.

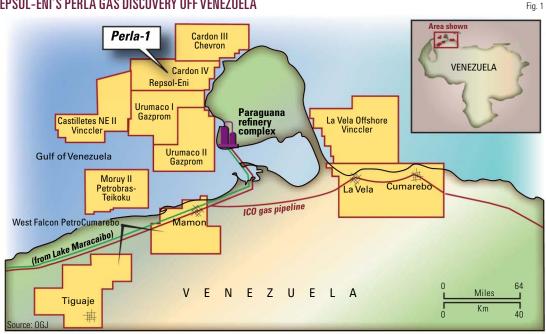
Earlier, the Spanish daily El Pais newspaper quoted Venezuela's President Hugo Chavez as saying that 1.5-2 tcf of the 7-8 tcf could be recoverable—a figure that Repsol YPF could not confirm. Repsol said the areal extent could be as

large as 33 sq km.

In any case, Chavez saw the find as boosting Venezuela into the top tier of world gas producers, saying, "At the rate the certified scientific discoveries are going, Venezuela's gas reserves will place it among the top five in the world."

Chavez was in Spain as part of a state tour of European and Asian countries, which has included Iran, Turkmenistan, and Russia, where several agreements were signed for the developments of Venezuela's Orinoco heavy oil belt.

Regarding Perla, Repsol also de-



Exploration & Development

Repsol-eni's Perla Gas discovery off venezuela

clined to give the formation or depth or to say whether the gas contains liquids. It said the discovery is the company's

largest ever and the largest nonassociated gas find in Venezuela.

Perla is about 30 km northwest of

PDVSA's Paraguana Peninsula refinery complex, the world's largest. Gas for the complex comes from Lake Maracaibo and from eastern Venezuela the new Interconexion Centro Occidente pipeline.

Perla, 130 miles northeast of Maracaibo city, is also 180 miles east of Chevron-operated Riohacha, Ballena, and Chuchupa dry gas fields in the Caribbean as far as 32 km off Colombia's Guajira Peninsula (see

map, OGJ, July 22, 1974, p. 28). Those reservoirs are at about 6,000 ft. •

Mississippi

Mainland Resources Inc., Houston, and American Exploration Corp., Calgary, plan to explore for gas in deep Jurassic Haynesville shale on 13,500 net acres northeast of Natchez in Jefferson County, Miss.

Haynesville shale has similar attributes and is eight times thicker in the project area than in northwestern Louisiana based on engineering analysis of data from a Chevron well drilled on the acreage in the 1980s.

The companies have remapped the entire project area with reprocessed seismic data.

Mainland Resources has participated in the drilling and completion of two Haynesville shale wells in DeSoto Parish, La., and expects to complete a third well in a few months.

Mainland Resources will be operator and pay 80% of initial well costs to earn a 51% working interest in the

total project area. It was not clear when drilling might start.

Griffin & Griffin Exploration LLC, Jackson, Miss., plans drilling to further develop Belmont Lake oil and gas field in Wilkinson County, Miss.

The field, on 142 acres in the Mississippi River flood plain, averages 130 b/d of 29° gravity oil from two vertical wells on gas lift from Oligocene Frio to a tank battery above flood stage. The river tends to flood between January and May, but the wells can produce when submerged.

The first new well could spud as soon as Sept. 21, 2009, said 8% working interest holder Cheetah Oil & Gas Ltd., Nanaimo, BC.

One or two development wells, including a horizontal well, in the north half of the field and an exploration well in the south half could hike production, Cheetah said. Cumulative production is more than 30,000 bbl.

Texas

Gulf Coast

Texon Petroleum Ltd., Brisbane, will run production casing at the fourth well on its Leighton prospect in Mc-Mullen County, Tex., after the well had oil and gas shows in Cretaceous Olmos. TD is 9,000 ft.

Wireline logs at Tyler Ranch-3 indicate similar reservoir properties to the Peeler-1, Tyler Ranch-1, and Tyler Ranch-2 wells.

Texon contracted a larger rig to drill Tyler Ranch-4 in early October to target Olmos at 8,500 ft and Eagle Ford shale at 11,000 ft. Working interests are Texon 70% and Global Petroleum Ltd. and Excellong Inc. 15% each.

Texon holds 1,280 acres at Leighton and a 100% working interest in 1,434 acres at Mosman, 4 km southwest, and is seeking partners for the first Mosman well as early as first quarter 2010 to test Olmos and Eagle Ford.

Oil & Gas Journal / Sept. 28, 2009

qMag

Drilling & Production

Seven shale plays dominate today's North America natural gas potential reserves additions and production increases.

Contrary to prior expectations of gas strategists and forecasts of

gloom, ¹ today North America is awash in natural gas supply. While reduced demand (-1.6 bcfd) and the new Rockies Express pipeline (0.9 bcfd) have been partly responsible, gas shale development undoubtedly has been the single most important factor.

During the past 5 years, gas shale production grew to more than 8 bcfd from 2 bcfd (Fig. 1). For some time now, shale and other unconventional reservoirs have helped stabilize US gas production, offsetting long-term production declines from conventional sources. Then, in recent years, the shale growth accelerated markedly, helping to push up overall US gas production into

the US and the Horn River and Montney in Canada (Fig. 3). Expectations are that these seven shale plays (the "Magnificent Seven") will dominate future natural gas reserves additions and production increases.

Building on the lessons learned from US and Canadian gas shales, various companies are starting to pursue overseas gas shale exploration in prospective areas such as Europe, Australia,

From a resource once relegated to small independent producers, today majors, large independents and national companies are pursuing the play. How did this transition come about and where is it headed?

India, and other countries.

This three-part series on gas shale development begins with a look at the established and emerging North American shale basins and plays. The next two parts will examine the evolving technological and environmental

GAS SHALE—1

Seven plays dominate North America activity

Scott Stevens Vello Kuuskraa Advanced Resources International Inc. Arlington, Va.

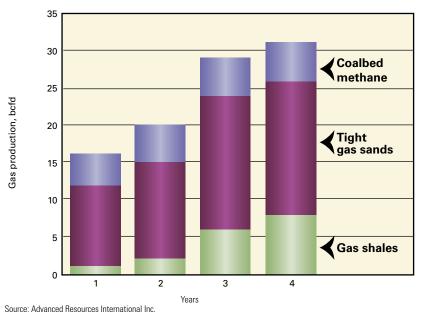
growth territory for the first time in a decade (Fig. 2).

The gas shale transition began with the Barnett shale in North Texas, followed by the Fayetteville in Arkansas and the Woodford in Oklahoma, and then was accelerated by the gas shales in the Haynesville and the Marcellus in considerations for optimally producing shale reservoirs as well as the potential for developing emerging gas shale plays in North America and elsewhere.

Shallow, deep shales

The Section 29 nonconventional fuels tax credit in the 1980s helped develop and boost the economics of the marginally productive organic-

Oil & Gas Journal / Sept. 28, 2009



e <mark>q</mark>Mags

Drilling & Production

US UNCONVENTIONAL GAS PRODUCTION

Source: Advanced Resources International Inc.

rich gas shales such as Appalachia's Devonian Ohio shale and Michigan basin's Antrim shale.

Companies developed these shallow (500-2,500 ft deep) shale plays with conventional vertical wells and small hydraulic stimulations. Production was modest, generally about 100 Mcfd/well

but long-lasting with reserves in the 0.25 bcf/well range. Fortunately, capital costs also were low.

These shallow, low-maturity, clayrich shale reservoirs store gas mainly from methane adsorption, with only a small porosity gas component. Today, these shallow shales produce about 1

bcfd.

Fig. 1

Modern deep shale development began about 1995 with emergence of the Barnett shale play in the Fort Worth basin, North Texas (Fig. 4). Long known for its gas-rich deposit, the Barnett at 8,000 ft pushed the depth envelope for favorable flow capacity.

Mitchell Energy & Development Corp.'s innovative large slick-water fracs outperformed earlier small gel fracs but their vertical wells still recovered just a small percent of the gas in place.² The first US Geological Survey assessment placed technical recovery from the Barnett Shale at just 3.4 tcf.³

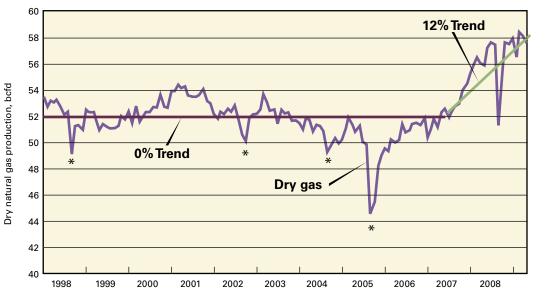

Devon Energy Corp. acquired Mitchell in 2000 and recognized it could create more reservoir flow paths with a cased 4,000-ft horizontal well stimulated with large slick-water fracs containing several million pounds of sand proppant and pumped in 8-12 stages. Recovery increased manyfold compared with earlier vertical wells. As horizontal drilling and fracturing technology advanced, Barnett core area wells have improved to an average 2.5 bcfe/well. Current production from the entire play is almost 5 bcfed from more than 12,000 vertical and horizontal wells.

Fig. 2

core area sweet spot has favorable depth, thickness, thermal maturity, pressure gradient, and a hard underlying sandstone that acts as a hydraulic fracture stress barrier, focusing energy within the shale reservoir. With access to new well performance and geologic data, an updated USGS resource assessment placed technical gas recovery from the Barnett at 26 tcf.4

The Barnett's

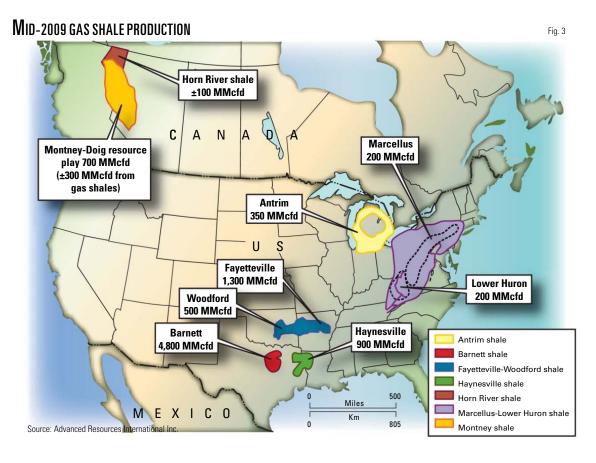
US gas productive capacity

Source: DOE-EIA Short Term Energy Outlook, August 2009

Oil & Gas Journal / Sept. 28, 2009

Advanced Resources puts the remaining undeveloped recoverable resource from the Barnett at 15-40 tcf, depending on gas prices. This gas play still has room to run.

Barnett lessons learned


A series of factors spurred the explosive growth of high-quality shale plays beyond

the Barnett, as documented by internal studies performed recently by Advanced Resources, to be discussed in the second article.

The factors include a greater geologic understanding, advances in drilling and completions, and access to land and infrastructure.

Although the Barnett shale was an acknowledged deep horizontal shale success, doubts lingered over whether it was merely a one-of-a-kind geologic setting, such as the still-unmatched San Juan fairway coalbed methane play in New Mexico. Not until 2006, following Southwestern Energy Co.'s Fayetteville and Newfield Enegy Co.'s Woodford shale production breakthroughs, were the doubters finally silenced and the new shale exploration and development paradigm confirmed.

As it turned out, shale plays do not have to be Barnett look-alikes; their geologic settings can be remarkably varied.

For instance, reservoir depth can range from 3,000 ft in the Fayetteville to more than 14,000 ft in the Haynesville.

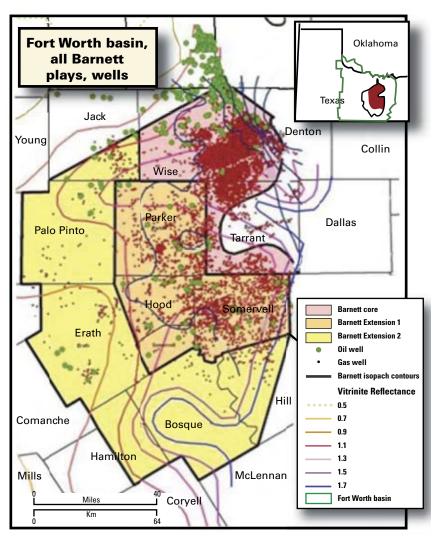
The key geologic precursors for deep shales turned out to be different than for the shallow shale plays. Modest but adequate porosity (6-12%) is essential for gas storage. Unusual mineralogy, low in ductile clays and high in brittle quartz, feldspar, and carbonate components, helps promote frac effectiveness.

The shale needs adequate thermal maturity (R_o >1.0%) to avoid unfavorable relative permeability from liquid hydrocarbons in the reservoir. Higher thermal maturity also promotes shrinkage of the total organic carbon (TOC), leading to higher effective permeability and often a fully gas-charged system. The shale needs an adequate TOC (2-5%) for gas storage by adsorption.

An equally important factor, requiring 3D seismic, is the avoidance of geohazards, such as water-bearing karsts and faults.

Natural fracturing turned out to be somewhat less important than initially assumed. Even with permeabilities in the nanodarcy range, artificial stimulation could create the resevoir's flow capacity.

Horizontal drilling coupled with large slick-water hydraulic fracturing, employing ever-increasing lateral length and proppant loads, often guided by real-time seismic monitoring, provides much more effective (5-10 times) flow capacity than traditional vertical wells.


Today, deep shale drillers all employ essentially the same Barnett-style well drilling and completion design: ±4,000-ft long laterals stimulated by multimillion-lb slick-water fracs in a dozen stages. Armed with these new techniques, deep shale development is spreading rapidly to the Marcellus, Haynesville, and Horn River shales. Advancements continue, including simultaneous fracturing of closely spaced

Oil & Gas Journal / Sept. 28, 2009

LLING & PRODUCTIO

BARNETT GAS SHALE PLAY

Barnett shale recoverable resources

	Cumulative recovery, tcf	Proved reserves, tcf	Remaining recoverable, tcf	Total, tcf
Core area	3.7	12	11	27
Extension area 1	1.5	8	12	21
Extension area 2	0.1	1	9	10
Total	5.3	20	33	58

Source: Advanced Resources International Inc.

wells (600-800 ft apart) to contain the injected energy and more intensively shatter the shale reservoir.5

Access, infrastructure

Companies generally can develop shale plays located in the US Midcontinent and East, where most land is

owned privately, with minimal political wrangling. The fact that shale developments can cover entire counties means that royalties are spread among thousands of individual landowners, often aligning them with operators.

On the other hand, development of eastern gas shales has raised concerns

among environmental organizations and the general public, slowing or stopping development.

At both the state and federal levels, pressure exists for more active regulatory oversight of shale gas development. Particular areas of concern are frac water sourcing and disposal, along with the perceived effect of fracturing operations on ground water.

The third article in this series on gas shales will further explore the critical geologic, well completion, and environmental issues important for more optimally developing these unconventional gas resources.

New shale operators.

A new breed of shale operators mostly mid to large-cap independents-emboldened by the improved geologic understanding and production technologies, has leased millions of shale-prospective acres. Most have tacked adeptly through the recent economic turbulence, bolstered by price hedging and supportive capital markets.

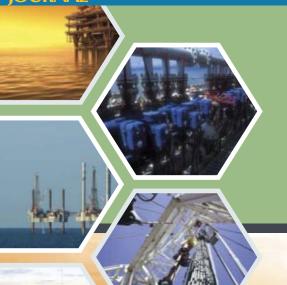
Hedging and financial inflows have enabled operators to hold and develop their best shale acreage in spite of (and indeed exacerbating) the collapse of spot gas prices.

In another industry step change, during the past year majors such as BG Group, BP PLC, ExxonMobil Corp., Shell Canada Ltd., and StatoilHydro have entered shale plays in a significant way through leasing and acquisition.

These include BP's purchase of Chesapeake's Woodford shale properties for \$1.75 billion, as well as the company's \$1.9 billion deal for 25% of Chesapeake's Fayetteville shale position.

Shell acquired Duvernay Oil Corp. for \$5.9 billion, including extensive Montney shale leases in Canada.

Statoil farmed into Chesapeake's Marcellus shale position for \$3.3 bil-


BG Group acquired an interest in Exco Resources Inc.'s Haynesville shale acreage for \$1.55 billion.

Oil & Gas Journal / Sept. 28, 2009

H.E. Dr. Abdul-Hussain Bin Ali Mirza - Minister of Oil & Gas Affairs and Chairman of National Oil & Gas Authority, Kingdom of Bahrain

Bahrain International Exhibition Centre, Manama, Bahrain 27 - 29 October 2009, www.offshoremiddleeast.com

REGISTER ONLINE TODAY

www.offshoremiddleeast.com

It is said that "The secret of success is to surround yourself with successful people". On 27-29th October you have an extremely valuable opportunity to do exactly that.

You are invited to join some of the most successful industry leaders to share the insights, foresight and experiences at Offshore Middle East 2009 in Manama, Kingdom of Bahrain.

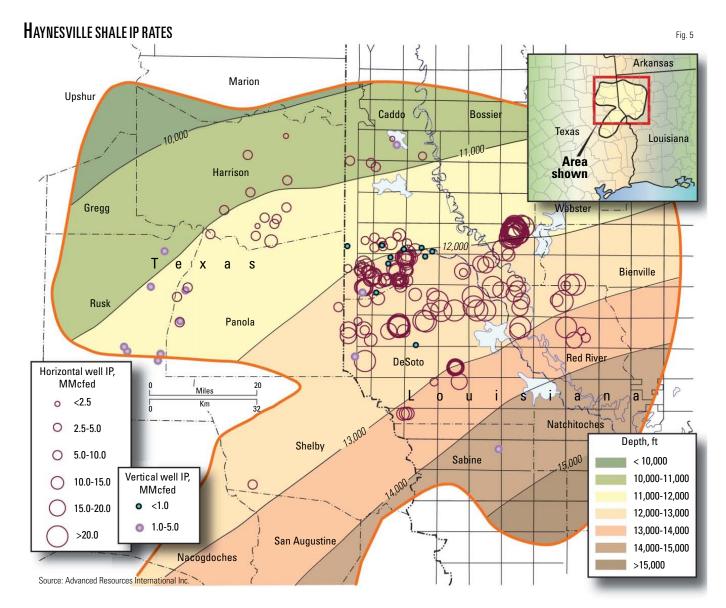
Offshore Middle East 2009, the only event dedicated to offshore oil and gas technology in the Middle East, will enable you to make important connections in the region's offshore oil and gas industry. Offshore Middle East provides a forum where industry leaders can address technical issues, introduce pioneering technology and share lessons learned about finding, developing and producing oil in the Middle East offshore regions.

Top Reasons to Attend Offshore Middle East 2009:

- High quality speakers providing detailed insight into region's offshore oil and gas industries
- Interactive panels and sessions
- Networking receptions providing opportunities to meet key industry players
- Leading industry exhibition.

Register before 25 September and save up to 15%

To find out more and to register please visit our website at www.offshoremiddleeast.com



Drilling & Production

Others have taken the leasing approach in the Marcellus (Marathon Oil Co.), Eagleford (ConocoPhillips), and Horn River plays (ExxonMobil).

The Magnificent Seven

Including the Barnett, seven highquality new deep gas shale plays are under development in North America: five in the US and two in Canada.

The high-quality core areas of these plays can have low overall full-cycle "break-even" costs of \$4-5/Mcf, while the less favorable outer areas tend to have much higher costs. Advances in well drilling and completion technology would help lower the costs of

developing the outer areas of these gas shale plays.

Fayetteville (Arkansas)

The eastern Arkoma basin's Fayette-ville shale is a Mississippian Barnett-equivalent that extends across central Arkansas. It was the second deep shale to be commercialized. This discovery helped convince industry that the Barnett was not unique and that shale plays need not be geologic Barnett clones. This widened and intensified the global deep shale hunt.

The Fayetteville is shallower than

the Barnett (3,000-5,000 ft deep vs. the Barnett's 6,000-8,000 ft) as well as thermally more mature (2.5% $\rm R_{\odot}$ vs. the Barnett's 1-1.5%). Carbonate collapse zones (karsts), which plague portions of the Barnett, are not present but water-bearing faults can occur.

The lower Fayetteville is the main completion target, as it is the most quartz-rich, high in total organic content, fairly porous, and gas-saturated zone

Four shale-experienced operators dominate the Fayetteville shale play and production has increased rapidly to 1.3 bcfed today.

Southwestern Energy Co., with near-

Oil & Gas Journal / Sept. 28, 2009

Fig. 6

ly a million net acres including much of the play's core area, recently attained the 1-bcfed benchmark. Others include Chesapeake-BP, XTO Energy Inc., and Petrohawk Enegy Corp.

Southwestern envisioned the play in 2002, drilled its first two vertical wells in 2003 to confirm reservoir quality, and eventually tested 33 pilots across its acreage to evaluate geologic quality and optimize well design.

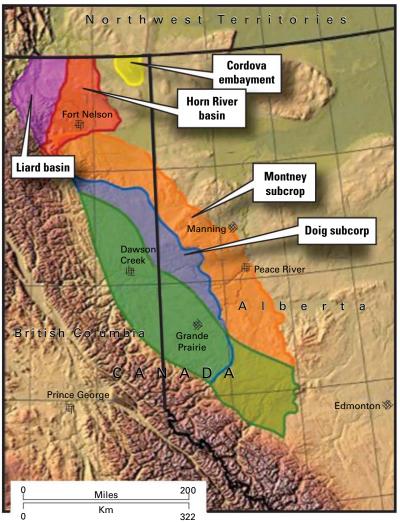
Development started with vertical wells but soon switched to horizontals employing 2,500-ft laterals that were stimulated with crosslink gel fracs.

By 2007, Southwestern evolved its completion to longer laterals with slickwater fracs, both of which significantly improved gas production.

Recent wells are positioned using 3D seismic and typically employ 4,000+ ft laterals stimulated with a dozen or more frac stages.

Today, wells cost about \$2.9 million (all-in), produce at initial rates of 3.0 MMcfd (30-day rate), and are expected to recover about 3.0 bcf/well in the core area. Active development continues despite low gas prices.

Woodford (Oklahoma)


The western Arkoma basin hosts the Mississippian-age Woodford shale play, which currently produces about 0.5 bcfed. Newfield Exploration Co. began to develop the play in 2006 and its early success helped bolster the global acceptance of deep shale as an exploration target.

The Woodford has some of the longest shale laterals drilled, up to 10,000 ft in the reservoir, thanks to enlightened state well-spacing regulations. Overall development, costs however, tend to be relatively high in the Woodford and low gas prices have severely curtailed drilling this year.

Production likely will plateau or even decline until gas prices recover. Newfield, the largest shale operator in the play, currently produces 240 MMcfed but has recently begun to release many

A geologically distinct emerging

WESTERN CANADA GAS SHALE BASINS

Source: Advanced Resources International Inc

Woodford shale play occurs in the deep Anadarko basin. This "Cana" play has Haynesville-like 13,000-ft depths and is highly overpressured. Leading operators include Devon and Cimerex Energy Co. While the play is not yet proven, early well tests are encouraging.

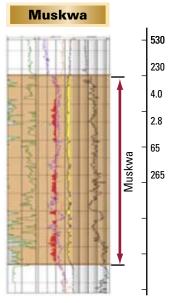
Marcellus (Appalachia)

The Devonian Marcellus shale had been productive for decades in this region but in shallow settings. Then, starting about 5 years ago, success in the Barnett spurred operators to test the deeper portions of the Marcellus

(5,000-9,000 ft depth) for the first

Recent geologic resource studies have helped quantify the potential of this huge shale target, which stretches from Kentucky to New York.

The USGS defined thickness, depth, and other reservoir parameters in 2002, conservatively estimating that the play had 1.9 tcf of recoverable resources.6 Academic and industry studies have since raised that estimate to as high as

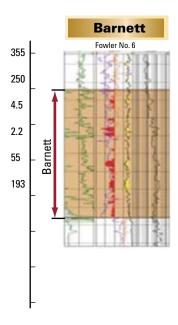

ARI's internal study of the play (using a database of more than 500 wells) puts recovery in the 100-200 tcf

Oil & Gas Journal / Sept. 28, 2009

Drilling & Production

HORN RIVER MUSKWA, BARNETT SHALE COMPARISON

Thickness, ft


Permeability, nanodarcy

Gas-filled porosity, %

Maturity, R_o

Silica content, %

Gas in place, bcf/sq mile

Source: Modified from EOG Resources, 2008

range, depending on gas prices, out of more than 1,600 tcf total gas-in-place resource.

Two Marcellus sweet spots have emerged. Southwestern Pennsylvania has fairly thick shale (100-150 ft) with high TOC. Marginally mature ($R_o \sim 1\%$), this area produces wet gas that requires surface separation facilities.

Early-mover Range Resources Corp. has drilled 46 horizontal Marcellus wells, mostly in Washington County near Pittsburgh. Recent wells have an average 7 MMcfed initial potential, with one as high as 26 MMcfed (24-hr rates).

Range estimates recovery at about 4.4 bcfe/well, with a horizontal well estimated to cost \$3.5 million (all-in).

The company estimates its total potentially recoverable resource from the Marcellus at 15-22 tcfe.

CNX Gas Corp. also reports good results in southwestern Pennsylvania, where it has drilled eight horizontal wells (6,000-ft vertical depth, 3,000-ft laterals) costing about \$3.5 million, with initial potentials of up to 4.1 MMcfed.

Vertical wells also have been suc-

cessful in the Marcellus. Atlas Energy Resources LLC has drilled more than 160 vertical Marcellus wells, with recent completions reported at 1.4 bcfe/well and costing just slightly more than \$1 million/well. The company has increased its estimate of potentially recoverable resources on its acreage to about 9 tcfe.

Although companies likely will develop the Marcellus mainly with horizontal wells, verticals still will play a role.

A second sweet spot is developing in northeast Pennsylvania and south-central New York, where the Marcellus is exceptionally thick (200-400 ft). Cabot Oil & Gas Corp. has tested several wells here with initial potential's up to 9 MMcfed.

Ultra Oil & Gas Inc. has tested five horizontal wells, each coming in at more than 5.3 MMcfed (24-hr rates). Talisman Energy Inc., Chief Oil & Gas LLC, and Epsilon Energy Ltd. also report high-rate wells in this area. Other operators include Chesapeake, Southwestern, and Range.

Overall, Marcellus shale production currently is at about 200 MMcfed. Production is growing more slowly than in other shale plays because of rugged topography, a shortage of appropriate drilling rigs, environmental and regulatory hurdles, and the sheer size of the acreage, which must first be properly evaluated.

With its low finding and development costs, however, the vast Marcellus play may eventually reach or exceed Barnett Shale production rates.

Haynesville (Louisiana/Texas)

In late 2007, the "buzz" was that the massive Hayneville shale play in the Louisiana Salt basin of northern Louisiana and East Texas could eventually outshine even the Barnett shale.

The Haynesville shale is a Jurassic shale, much younger than the Mississippian Barnett, Fayetteville, and Woodford plays. It is also deeper (10,000-15,000+ ft), breaking the rules on where successful shale plays could go.

With decent levels of porosity (8-12%) in the eastern portion of the play area, the Haynesville is rich in brittle carbonates and quartz, particularly in its basal section.

The play's substantial depth, extreme

Oil & Gas Journal / Sept. 28, 2009

OIL&GAS JOURNAL online research center...

OGJ Surveys in Excell

Your Industry Analysis Made Cost Effective and Efficient

Put the Oil & Gas Journal staff to work for you! Employ our Surveys with accepted standards for measuring oil and gas industry activity, and do it the easy way through Excel spreadsheets.

Oil & Gas Journal Surveys are available from the OGJ Online Research Center via email, on CD, or can be downloaded directly from the online store. For more information or to order online go to www.ogjresearch.com.

FOR INFORMATION

E-mail: orcinfo@pennwell.com Phone: 1.918.831.9488 or 1.918.832.9267

TO ORDER

Web site: www.ogjresearch.com Phone: 1.800.752.9764 or 1.918.831.9421

Numbers You Can Count On Every Time!

OIL & GAS JOURNAL SURVEYS

Worldwide Refinery Survey — All refineries worldwide with detailed information. E1181C Historical 1986 to current F1080 Current

Worldwide Refinery Survey and Complexity Analysis — Updated each January. E1271 Refining Survey Plus Complexity Index

International Refining Catalyst Compilation — Refining catalysts with information on vendor, characteristics, application, catalyst form, active agents, etc. CATALYST Current

OGJ guide to Export Crudes-Crude Oil Assays — Over 190 assays. CRDASSAY Current

Worldwide Oil Field Production Survey — Field name, field type, discovery date, and depth. E1077C Historical, 1980 to current

Enhanced Oil Recovery Survey — Covers active, planned and terminated projects worldwide. Updated biennially in March.

E1048 Current E1148C Historical, 1986 to current

Worldwide Gas Processing Survey — Gas processing plants worldwide with details.

E1219C Historical, 1985 to current E1209 Current

International Ethylene Survey — Information on country, company, location, capacity, etc. E1309 Current E1309C Historical, 1994 to current

LNG Worldwide — Facilities, Construction Projects, Statistics **LNGINFO**

Worldwide Construction Projects — List of planned construction products updated in May and November each year.

	Current	Historical 1996—Current
Refinery	E1340	E1340C
Pipeline	E1342	E1342C
Petrochemical	E1341	E1341C
Gas Processing	E1344	E1344C

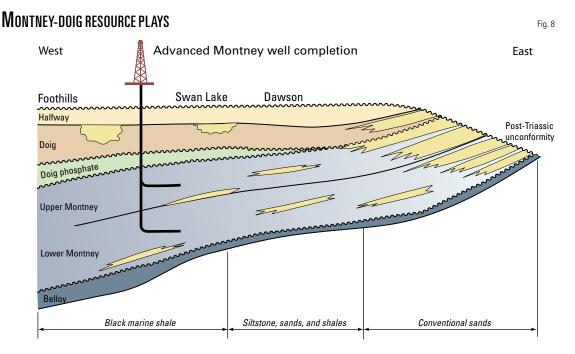
U.S. Pipeline Study — There are 14 categories of operating and financial data on the liquids pipeline worksheet and 13 on the natural gas pipeline worksheet.

Worldwide Survey of Line Pipe Mills — Detailed data on line pipe mills throughout the world, process, capacity, dimensions, etc. **PIPEMILL**

OGJ 200/100 International Company Survey — Lists valuable financial and operating data for the largest 200 publicly traded oil and gas companies. E1345 Current E1145C Historical 1989 to current

Oil Sands Projects — Planned Canadian projects in four Excel worksheets. Includes mining, upgrading, in situ projects, and historical table with wells drilled back to 1985. OII SANDPRI

Production Projects Worldwide — List of planned production mega-projects. **PRODPROJ** See website for prices


www.ogjresearch.com

iiing & Production

bcfed, is growing much faster than in the Marcellus. Eventually production could approach Barnett production.

In a possible harbinger of deals to come, BG Group recently agreed to pay Exco \$1.55 billion for a 50% share of certain upstream and midstream Haynesville assets in Louisiana. Numerous other operators are positioning to establish a stake in one of North America's largest and lowest-

overpressuring (up to 0.85 psi/ft), huge size (>1,000 tcf of gas in place), and rich resource concentration (>200 bcf/sq mile) place the Haynesville in rarefied company.7 But amazingly, there could be further upside: the overlying Bossier shale offers a secondary gascharged completion target.

The primary challenge for the Haynesville is the high-pressure, hightemperature drilling environment and high resulting well costs of \$10+ million. In addition, due to sharp initial year declines, long-term production and per-well reserves remain uncertain.

Companies still are defining the Haynesville's sweet spot. They have drilled excellent wells in portions of DeSoto, Caddo, Red River, and Bossier parishes, northern Louisiana, clustering around the 12-13,000 ft depth interval (Fig. 5). Core area wells frequently have an initial potential in excess of 20 MMcfed (24-hr rate).

Depending on decline rates these wells might be capable of producing 6-8 bcfe or more. Well costs are high but expected to drop with operational efficiencies such as pad drilling. Core area wells look attractive even at \$4/ MMbtu Henry Hub gas price.

The East Texas and extreme northern Louisiana portions of the Haynesville play are shallower (10-12,000 ft) and thicker (up to 400 ft). Reservoir quality, notably gas-filled porosity and brittle mineral content, however, appears lower. Wells typically have an initial potential below 10 MMcfed and will require higher gas prices to be economic.

Early thinking was that fracturing would require costly synthetic silicon carbide proppant for resisting the Haynesville's high pressures and temperatures. Most operators, however, have found low-cost resin-coated sand proppant to be adequate.

Haynesville shale operators include early-movers Chesapeake, EnCana Corp., Petrohawk, and Exco Resources, all with large core area positions.

Two dozen other operators are testing the horizons below their legacy gas fields, which produce from the Cotton Valley, and are acquiring undeveloped acreage.

Production, currently more than 1

cost gas plays.

Horn River basin

A sequence of geologically attractive gas shales exist in the Horn River basin, in northeast British Columbia, with the Late Devonian Muskwa shale the most prominent. Often the Muskwa, Otter Park, and Horn River sequences are grouped within the broader Horn River terminology (Fig. 6).

The Horn River basin has an areal extent of about 5,000 sq miles. The Muskwa-Horn River shale within this basin is 300-500 ft thick in the heart of the play, thinning to 100-150 ft to the south near the Peace River arch.

Gas-filled porosity ranges 1-9%, with 3-4% typical.

Thermal maturity is high $(R_1 =$ 2-4%), reflecting a dry gas setting. There is potential for elevated CO₂ in the more thermally mature areas.

At a representative 8,000 ft depth, the formation is overpressured with a 0.6 psi/ft reservoir pressure gradient.

The Muskwa shale is organically rich, with an average 3% organic carbon content.

Fig. 7 shows a side-by-side compari-

Oil & Gas Journal / Sept. 28, 2009

Previous Page | Contents | Zoom In | Zoom Out | Front Cover | Search Issue | Next Page

son of the Horn River basin Muskwa and Fort Worth basin Barnett shale wells. EOG Resources Inc. drilled both wells in geologically favorable settings.

The figure shows that the Muskwa shale is thicker and more mature, providing higher gas concentration. The Muskwa shale has a higher silica content of 65% vs. 55% for the Barnett shale, causing the Muskwa shale to be more brittle and favorable for hydraulic fracturing. The Muskwa and Barnett shale have similar permeabilities and gas-filled porosities.

Seven major companies, led by En-Cana and Apache Corp., hold significant lease positions in the Horn River gas shale play.

Horizontal well drilling has had positive results, with initial rates of 3-10 MMcfd. Operators, however, are still testing and optimizing their drilling and well completion strategies.

Market outlets and high transportation costs are a concern, as is gaining year-round access to drilling sites. Two new regional pipelines are under development to bring gas to markets. A 24-in. line is due in service mid-2009 and a larger 36-in. line is due in service by mid-2011.

Other innovative market options include sending gas to the oil sands area in northern Alberta as well as to coastal Kitimat, BC, for export as LNG.

Montney shale

The Montney resource play represents a complex geological sequence that varies from conventional gas (and oil) along the eastern edge of the basin, to a combination tight gas and gas shale play in the center, and to a classical black massive gas shale complex along the western edge (Fig. 8).

The closest geological analog may be the complex Bossier sand and shale play on the Texas and Louisiana border.

The Montney resource covers a massive area, more than 35,000 sq miles, with geologic and reservoir properties changing dramatically from the eastern

to the western portion of the play area.

The Mid to Lower Triassic-age deposit contains sandstones on the shallower (3,000 ft) eastern boundary of the play, grading to siltstone and shale in the deeper (8,000 ft) western boundary of the play.

In the western Montney play area, near Dawson Creek, the gas shale is thick, thermally mature with high organic content. In the northern portions of the area, north of Fort St. John, the Montney Shale has higher clay content and decreased silica, reducing the brittleness of the formation and its favorability for creating reservoir permeability and flow capacity with hydraulic stimulation.

While companies have drilled considerably in the eastern and central portions of the Montney resource play, they only have drilled lightly the western gas shale play. Early horizontal well performance in the geologically favorable portions of the area, however, has been attractive with initial 30-day gas rates of 5 MMcfd and relatively modest declines for gas shale wells.

A large number of operators hold leases in the heart of the Upper and Lower Montney gas resource play, led by EnCana (with about a million acres), Shell (after its purchase of Duvernay Oil in mid-2008), plus Talisman, Murphy Oil Corp., and ARC Energy Trust. ◆

References

- 1. Greenspan, A., Testimony Before the Committee on Energy and Commerce, US House of Representatives, June 10, 2003.
- 2. Reeves, S.A., Kuuskraa, V.A., and Hill, D.G., "New basins invigorate US gas shales play," OGJ, Jan. 22, 1996, p. 53.
- 3. Kuuskraa, V.A., Koperna, G., Schmoker, J.W., and Quinn, J.C., "Barnett shale rising star in Fort Worth basin," OGJ, May 25, 1998, p. 67.
- 4. Pollastro, R.M., Hill, R.J., Jarvie, D.M., and Henry, M.E., "Assessing Undiscovered Resources of the Barnett-Paleozoic Total Petroleum System, Bend Arch—Fort Worth Basin Province,

Texas," AAPG Southwest Section Meeting, Fort Worth, Mar. 1-4, 2003.

- 5. Mutalik, P.N., and Gibson, B., "Case History of Sequential and Simultaneous Fracturing of the Barnett Shale in Parker County," Paper No. SPE 116124, SPE ATCE, Denver, Sept. 21-24, 2008.
- 6. Assessment of Undiscovered Oil and Gas Resources of the Appalachian Basin Province, US Geological Survey, 2002.
- 7. Parker, M., Buller, D., Petre, E., and Dreher, D., "Haynesville Shale—Petrophysical Evaluation," Paper No. SPE 1228937, SPE Rocky Mountain Petroleum Technology Conference, Apr. 14-16, 2009, Denver.

The authors

Scott H. Stevens (sstevens@ adv-res.com) is senior vice-president of Advanced Resources International Inc., Arlington, Va. He works on geologic and financial analyses of unconventional petroleum projects worldwide. Formerly an explo-

rationist with Texaco and Getty, he holds a BA in geology from Pomona College, an MS in geological science from Scripps Institution of Oceanography, and an AM in regional studies in East Asia from Harvard University.

Vello A. Kuuskraa (vkuuskraa@adv-res.com) is
president of Advanced Resources
International Inc., Arlington,
Va. He has more than 30
years of experience in the oil
and gas industry, particularly
in unconventional oil and gas
resources, enhanced oil recovery,

and CO₂ sequestration. Kuuskraa holds a BS in applied mathematics from North Carolina State University and an MBA from the Wharton Graduate School, University of Pennsylvania. He serves on the Board of Directors of Southwestern Energy Co.

Oil & Gas Journal / Sept. 28, 2009

IIING & PRODUCTION

Understanding process key to shale gas development

Mark Parker Halliburton. Tyler, Tex.

Making hydrocarbon production from shales a profitable venture requires a process for driving down overall costs. It is clear from experience in these tight, widely varying resource plays that companies achieve an advantage through many

efficiencies reached during the entire exploration and development process.

The starting point is critical to the success of this process. Because shale varies greatly, what works in one reservoir or well probably will not be as effective in the next. Failure to understand the difference leads to expensive miscalculations and prolonged well development.

Each shale well and reservoir requires a high degree of understanding to reach its full economic potential. This is especially important when exploring new shale formations for which knowledge is a key factor in the speed and efficiency of bringing on production.

Lessens learned in exploiting the Barnett shale in north-central Texas, have helped form processes for evaluating and developing the Haynesville shale to the east of the Barnett and the emerging Eagle Pass shale south of the Barnett.

The need to know cannot be emphasized strongly enough. Reservoir knowledge guides a multitude of choices that can make or break a shale well, including critical steps in designing optimal fracture treatments.

Understanding the reservoir in these complex unconventional resources entails a rigorous grasp of rock properties, fracture geometry, fluid interactions, evaluation processes, microseismic

surveys, tracers, and production logs. It also requires sharing this information across disciplines so that insights are leveraged as effectively as possible.

Collaboration among geoscientists and engineers is central to improving shale exploitation. Having a single strategy for the entire well rather than a series of discrete operations enables everyone on the asset team to make decisions with full knowledge of how actions affect total well objectives.

Specialized processes for shale analysis and stimulation design facilitate this effort. For instance, Halliburton's

ShaleEval shale formation evaluation service forms expert shale teams that integrate geology and engineering in a process that examines fluids, the fracture treatment, formation evaluations, and candidate selection.

The process also uses shale-specific systems to identify mineralogy and integrate wireline log data and laboratory core analysis to help define shale characteristics. The information guides fracture treatment design by helping

> identify targets, which is critical to well performance in shale reservoirs. These systems are components of a life-cycle-based approach to developing shale reserves that Halliburton uses to integrate asset management from the first look at reservoir potential through development stages and decline.

Ultimately, this knowledge sharing facilitates a holistic view of the reservoir

throughout its development, which brings with it the various insights needed to create shared efficiencies and synergies.

Formation description

Companies can acquire reservoir information with basic logging suites. Their primary purpose is exploration and calculation of reservoir fluids. But new analysis and presentation techniques provide a comprehensive formation description that is routinely verified and calibrated with core analysis.

A variety of logs provides highly

Oil & Gas Journal / Sept. 28, 2009

practical information about shale. For example, formation lithology is identified with natural gamma ray tools to measure elevated uranium signals that are common indicators of shales rich in organic matter and total organic carbon (TOC). When they also exhibit sufficient porosity, these shales typically are productive.

Information also comes from resistivity measurements that indicate fluid saturation and permeability in the shale. Low permeability and high clay content can be an early indictor that the shale may not respond well to treatment.

Density logs and dual count neutron logs indicate shale porosity and the associated reservoir capacity for storing fluids. Acoustic logs, which record the velocity of compressional and shear waves through the formation, are used to generate stress data, which help predict the behavior of hydraulic fracturing treatments that are critical to shale production.

Images of the formation acquired with electrical borehole imaging tools provide views of the sedimentary sequences in the wellbore. This information is used to plan optimal horizontal well trajectories in shales, guide sidewall-coring points and identify pressure dependent leak-off points from small fractures.

Magnetic resonance logging provides data on the fluids in the pore spaces as well as other formation parameters such as pore size, calculated permeability and presence of clays. In shale wells, these data cover the long, continuous intervals at reservoir conditions with less expense than conventional core data.

Building on the Barnett

Much of what is known about the mysteries of shale rests on lessons learned in developing commercial production out of the Barnett shale in north-central Texas. In pioneering this resource play, companies have applied innovative new technologies and methods subjected to almost daily changes.

But successful techniques hammered out in the Barnett are not easily trans-

Shales from various plays have different properties (Fig. 1).

ferred to new and emerging shale plays. Experience proves that methodology is the most important constant in shale development, not discrete techniques. Using a process that starts with reservoir knowledge is key for selecting the most appropriate techniques and achieving the highest efficiencies.

To the east of the Barnett, the Haynesville shale straddles the borders between Texas, Louisiana, and Arkansas in one of the oldest productive regions in the US.

While the Haynesville is also a tightgas shale, the comparison of its relatively ductile rock with the Barnett shale is one of peanut butter to peanut brittle. Understandably, wells in these two shales are not completed in the same way. Fig. 1 shows various shale samples.

First drilled in 2005, the reservoir is deep at about 10,500-14,000 ft and hot with bottomhole temperatures as high as 380° F. Bottomhole pressures can exceed 12,000 psi and treating pressures climb to 15,000 psi. Its laminated shales include soft ductile intervals that can cause proppant embedment and fines problems.

There is vigorous discussion about how best to produce this resource and a correspondingly diverse set of production successes and failures. That has resulted in a competitive learning curve in this promising play as operators seek to exploit it economically.

Haynesville treatments

Reservoir knowledge is proving to be the best starting point for unraveling the Haynesville shale. A Halliburton study of modeled stimulations to test various treatment strategies has further defined fundamental differences in rock character and reservoir conditions compared with the Barnett shale.

The study reviews the design processes and technologies recommended to achieve the best production results. ¹ Its results are not indicative of any one particular well or set of reservoir characteristics.

Simulations conducted in the study indicate that formation brittleness is a valuable guide to identifying fracture initiation points. Perforating and fracturing from these intervals are critical to successful stimulation.

The study also shows that low-viscosity fluid systems do not provide adequate proppant transport and suspension to achieve long-term productivity in this formation. The Haynesville, however has successful simulations with

Oil & Gas Journal / Sept. 28, 2009

LLING & PRODUCTIO

Fracturing wells completed in the Haynesworth shale requires considerable horsepower (Fig. 2).

crosslinked gel fracture treatments containing high-conductivity proppants.

The successes were attributed to better wellbore-to-fracture communication established by proppant distribution throughout the created fracture height and length.

Fluid systems

In simulating a variety of treatment designs, the Haynesville shale study model consisted of a typical 4,000-ft lateral section broken into stages of about 300-400 ft. Within the stages were 3-4 perforation sets of 2-4 ft in length with a perforation density of 6 shots/ft.

To simplify the simulation, the study evaluated a single fracture created in a horizontal wellbore. It selected fluid systems based on rock properties.

The Haynesville shale is a generally ductile formation with relatively low Young's modulus and Poisson's ratio. Identification of brittle areas is important because these are the best targets for fracture initiation. But there are concerns too. These areas have significant lime content that can cause fines problems if acid is applied.

Clays are also present and can result in fines and swelling damage in response to water-based fluids.

The study also simulated multiple treatment designs to address treatments in the Haynesville shale that vary from high-rate, treated-water fractures, hybrids of treated water and linear gel, and hybrids of linear gel to crosslinked gels.

Water fractures with low proppant concentrations and large water volumes provide minimal conductivity damage and low costs. Linear-gel systems have good friction-reduction properties, similar to the water fractures with friction reducer.

Crosslinked-gel fracturing fluid systems allow treatment at lower pump rates, with smaller fluid volumes and provide the ability to place highconductivity proppants. Placing highconductivity proppants is not attempted with low-viscosity fluids because of the poor proppant transport and narrow fracture widths.

The fluid efficiency and excellent proppant transport of crosslinked systems can maximize formation surfacearea contact and communication with the wellbore to achieve the benefits of the long, horizontal sections with spaced fractures communicating with the wellbore.

High-viscosity fluids help establish a dominant fracture to accept larger high-strength proppants (20/40 mesh). In addition, more effective proppant transport provides a longer effective fracture with direct

communication at the wellbore.

Fig. 2 shows a typical fracturing spread on a Haynesville well.

Proppant options

High temperatures and pressures make proppant selection in the Haynesville important for short and longterm production. Cleanup and early production following fracturing are the immediate issues. But over time as reservoir pressure depletes, the increasingly stressful environment becomes the greater consideration.

Fracture conductivity may be the most important parameter for longterm production of the Haynesville shale. Initial closure stress on the proppant in the fracture may start at more than 6,000 psi. As production continues, the stress increases and can exceed 12,000 psi.

For water-frac treatments, conductivity issues include initial conductivity, two-phase flow (gas and water), proppant crushing and fines, and proppant embedment in the fracture face.

For linear-gel treatments, conductiv-

Held under the Patronage of H.E Dr Abdul Hussain Bin Ali Mirza, Minister of Oil & Gas Affairs, Chairman-National Oil & Gas Authority, Kingdom of Bahrain

CALL FOR ABSTRACTS OPEN OC SUBMIT ONLINE TODAY

Closing Date 21 August 2009

CONNECTING WITH IDEAS 2010

Bahrain International Exhibition Centre, Manama, Bahrain

18 - 20 January 2010 / www.oilandgasmaintenance.com / www.pipeline-rehab.com

The Advisory Board of Oil & Gas Maintenance and Pipeline Rehabilitation & Maintenance are now accepting abstracts for the 2010 Conference. We invite you to submit an abstract and share your knowledge, experience and solutions with industry colleagues from around the world.

Oil & Gas Maintenance Technology Track Scope of Sessions

- Predictive and Preventative Maintenance
- Fundamentals of Best-in-Class Maintenance
- Roadmap to Best-in-Class in Maintenance
- Maintenance Knowledge Management
- Aligning Knowledge/Training Towards Performance Excellence
- Maintenance Best Practices
- Maintenance Risk Management
- · Maintenance Change Management
- Maintenance Benchmarking
- · Contracting practices outsourcing
- Effective Maintenance KPI's (Key Performance Indicators)
- State of the Art Maintenance Tools & Equipment
- Industrial Maintenance Solutions
- Profit Opportunities and Asset Utilization
- Effective Utilization of CMMS

Pipeline Rehabilitation & Maintenance Track Scope of Sessions

- Pipeline construction in challenging soil environment
- Pipeline manufacturing and metallurgy
- · Rehabilitation methods and materials technology
- Risk assessment and area classification
- HAZOP (Hazard and Operability) studies, security and integrity
- Leak detection and cathodic protection systems
- Inspection of CP systems
- · Inline inspection and development of repair plans
- · Risk Assessment and preventative measures
- Offshore pipeline inspection, repair and rehabilitation
- Selection of valves
- Project Management

SUBMIT ONLINE TODAY WWW.OILANDGASMAINTENANCE.COM

DEADLINE: 21 AUGUST 2009

Flaaship Media Sponsors:

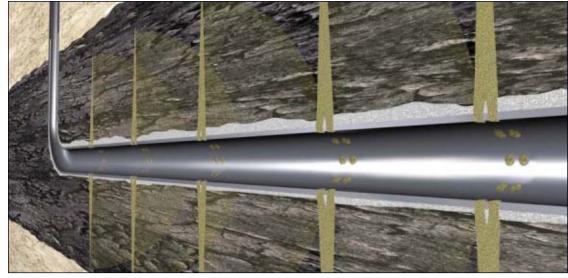
Owned & Produced by:

Flaaship Media Sponsors:

Offshore Oil, Gas & Petrochem Equipment

Drilling & Production

ity concerns include the same list, with the addition of a polymer filter cake. Crosslinked-gel treatments add concerns about the yield stress of residual polymer in the fracture. Gel breakers can address both the polymer filter cake and residual-gel issues.


Embedment is another issue. Proppants embedded into the ductile shale by formation pressure leads to decreased fracture width and

the resulting lower conductivity. Brinell hardness numbers (BHN) can be used to infer embedment. Table 1 from a Halliburton internal report shows BHNs for different formations, including several shale plays.

Shale formations have a great amount of variation. The Barnett is very hard with a BHN of 80, while the Marcellus BHN is a much softer 32. The Haynes-ville shale, with a BHN of 18, has one of the lowest values seen for low-permeability stimulation targets, indicating the most potential embedment.

These extreme variations from hard to very ductile formations are a strong indicator of the pronounced differences between shales and the scope of techniques that might be applied. What works in one play may not work as well in another and not at all in a third.

The study considered proppant conductivity for proppants for Haynesville shale stimulation treatments at simulated reservoir conditions of temperature and stress and proppant concentration of 1 lb/sq ft. Results of the simulations clearly show that man-made proppants are the most appropriate proppant based on conductivity. While this does not consider effects that reduce the conductivity of all proppants, it does show the relative performance of the

Haynesville well completions typically maximize reservoir exposure while eliminating communication between fractures with a reliable annular seal (Fig. 3).

SRINELL HARDNESS NUMBERS Table 1	
Formation	Brinell hardness
Woodford	43
Marcellus	32
Haynesville	18
Bossier	12
Barnett	80
Carthage lime	82
Ohio sandstone	34
Alabama coal	15
Floyd	25

proppants to guide selection.

The study shows the practical importance of petrophysical information in designing effective fracture stimulations of the Haynesville formation. Organic content, ductility and brittleness, clay content, and a host of other characteristics are fundamental to targeting the treatment and to the design of fluid and proppant systems.

A typical Haynesville well, designed to produce at high rates and low cost, maximizes reservoir exposure while eliminating communication between fractures with a reliable annular seal (Fig. 3).

Eagle Ford

South of the Barnett in the emerging Eagle Ford shale. Early operators are in the process of understanding a formation that recently was an obstacle rather than an objective.

Stretching across a broad swath of Texas from northeast to southwest, its potential is equally huge. But the play is very young and largely confined to three southwest counties: McMullen, LaSalle, and DeWitt. In these counties it lies at depths to about 12,000 ft.

The likely source rock for the Austin chalk formation above it, the Eagle Ford shale exhibits an altogether new range and different scope of shale characteristics, and challenges from the Barnett and Haynesville shales.

One of the most topical issues at this stage in the Eagle Ford is drilling through the depleted zones above it. Companies are drilling mile-long multilaterals in it, but the temperatures and pressures do not appear to be too demanding.

Still, the differences are being carefully considered, from variations in fluid compatibilities to changes in drilling and completion strategies. And within the Eagle Ford, operators are quietly noting the variations that exist within its boundaries, where shale depth, thickness and mineralogy can change dramatically over short distances.

As the resource play picks up momentum, the knowledge that is being collected now will be a major factor

Oil & Gas Journal / Sept. 28, 2009

play.

in how efficiently it is developed. The ability of early operators to achieve the efficiencies and effectiveness of an integrated process driven by this reservoir knowledge will determine the pace and

the success of the Eagle Ford resource

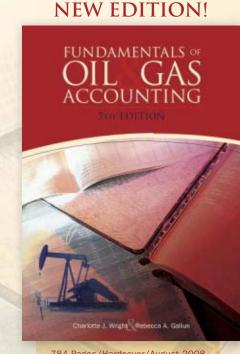
Start at the beginning

The effort under way to understand the Eagle Ford is the hallmark of success in gas shales. Clearly, this emerging play varies from the Haynesville shale, which is markedly different from the Barnett and other shales around the world.

The only way to approach economic development of these resources is by first understanding their unique characteristics. That knowledge guides a holistic approach that builds efficiencies during the life of the asset. •

Reference

1. Parker, M., "Haynesville Shale: Hydraulic Fracture Stimulation Approach," Paper No. 0913, International Coalbed and Shale Gas Symposium, Tuscaloosa, Ala., May 20-21, 2009.


The author

Mark A. Parker is a technical advisor for Halliburton with the Southeast Area Technical Team in Tyler, Tex. He has worked in the petroleum industry for over 29 years. He works with new technology development in hydraulic fracturing systems and proppants

in support of operations in the Southeast area. Parker holds a BS in geology from the University of Wisconsin-Oshkosh and an MS in environmental science from the University of Oklahoma.

A TRUSTED RESOURCE FOR ACCOUNTING PROS

784 Pages/Hardcover/August 2008 ISBN 978-1-59370-137-6 \$89.00 US

Two of the most respected experts in the field of oil and gas accounting, Charlotte Wright and Rebecca Gallun, have combined their expertise again to update this excellent training manual and professional reference.

Like its best-selling predecessor, the new 5th Edition of Fundamentals of Oil & Gas Accounting is packed with examples, diagrams, and appendices, and its scope is unmatched.

Inside you'll find new and updated material covering

- · Current issues facing oil and gas producers operating in the U.S. and internationally
- · Asset retirement obligations and asset impairment
- · Project analysis and investment decision-making
- · Asset exchanges and fair value reporting requirements
- · Oil and gas pricing and marketing arrangements
- · Examples and homework problems

BUY YOUR COPY TODAY!

www.PennWellBooks.com

1.800.752.9764

ROCESSING

La. refinery converts control system without shutdown

Ryan M. Schulz

Garyville, La.

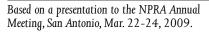
Baton Rouge

Adam R. Joiner

Marathon Petroleum Co. LLC

Honeywell Process Solutions

Marathon Oil Corp. has installed new process-control equipment and systems at its Garyville, La., refinery.


Migration to the new control system required close coop-

eration with its primary automation contractor, Honeywell Process Solutions.

> The refinery staff collaborated with Honeywell's site support specialists to formulate and execute a plan for migration to the next-generation

Experion Process Knowledge System without taking the refinery's process units off-line.

The project, described in this article,

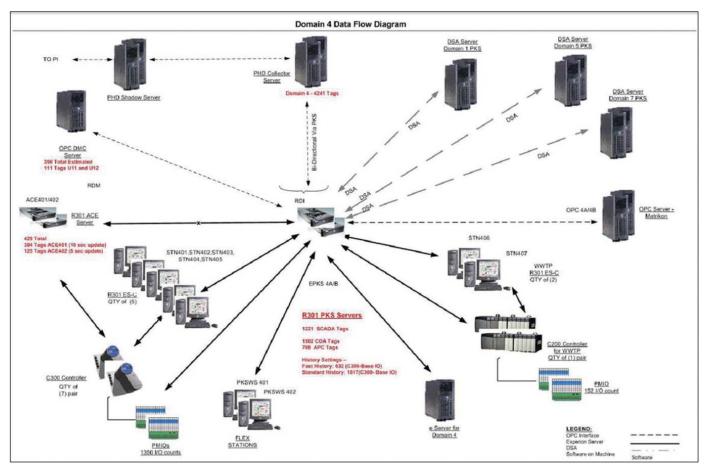
will provide a blueprint for future site migrations.

Marathon Oil has extensive refining, marketing, and transportation resources concentrated primarily in the US Midwest, upper Great Plains, Gulf Coast, and Southeast. Located to serve major markets, Marathon's operations include a seven-plant refining network with more than 1 million b/d of crude oil refining capacity.

The company's Louisiana refining division operation is located along the Mississippi River in southeastern Louisiana near Garyville (Fig. 1).

Migration requirements

At Garyville, a collection of complex refining operations converts 256,000 b/d crude oil into products such as gasoline and No. 1 and 2 fuel oils. Sulfur, asphalt, propane-propylene, isobutane, kerosene and coke are manufactured as secondary products.


As do other oil refining operations, Marathon requires automation solutions

Marathon Oil's refinery at Garyville, La., is the last grassroots refinery built in the US (Fig. 1; photo from Marathon Oil).

The detailed design process incorporated data flows for the entire control system architecture (Fig. 2).

to increase the reliability, efficiency and profitability—of its production assets. The refinery's legacy Honeywell TDC2000 distributed control system was originally installed in 1978.

As part of a plant expansion, the human-machine interface platform had been upgraded to the TotalPlant Solution platform with Global User Station capabilities. The aging data highway system no longer provided reliable day-to-day operation. Spare parts and support were also becoming scarce.

In addition, the legacy DCS did not provide the most current advanced control capabilities enabling the refinery to increase throughput, reduce costs and improve regulatory compliance, and answer customer demands for better product quality and faster delivery.

Marathon's initial attempt to migrate to Experion PKS for control of a crude unit was hampered by a lack of coordination among project participants, as well as insufficient computing capacity to handle demanding process-control functions. Through various trials, the refinery migrated its first TDC2000 Data Hiway to an Experion R200 system in 2004.

A subsequent migration project began in early 2007, when Marathon decided to convert a second Data Hiway to an Experion Version R301 system. This project encompassed a diesel hydrotreater, gas-oil hydrotreater and reformer, and a naphtha hydrotreater.

The work entailed moving about 1,400 control wire pairs to new marshalling panels, field termination assemblies, and process manager input/ output modules, as well as migrating all advanced process-control functions to the new Experion platform.

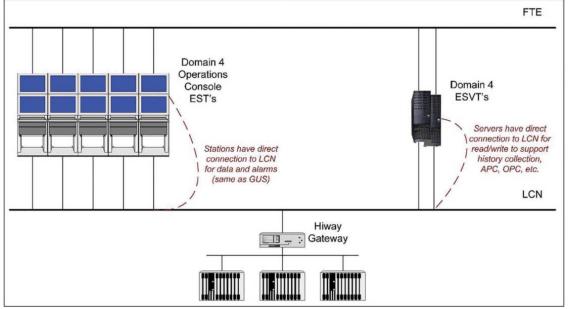
For this migration, Marathon and

Honeywell established a collaborative strategy based on common goal: To meet and exceed all end-user expectations and design requirements for implementation of a state-of-the-art automation architecture.

Kevs

During normal operations, refineries are reluctant to schedule shutdowns for non-critical maintenance or replacement of field equipment. Therefore, control system migrations are typically executed via a "hot cutover," which involves moving one control loop at a time to the new system, while the unit operates in order to eliminate production losses.

A hot cutover also provides immediate feedback that the instrumentation is connected and working properly and is viewed as having overall lower risks to operations.


Oil & Gas Journal / Sept. 28, 2009

ROCESSING

Phase 1 provided operator stations with direct connections to the local control network (Fig. 3).

Marathon realized it would require help from the local Honeywell field office, in Baton Rouge, to perform the hot cutover to Experion. Key to the project was the ability to convert the legacy system to new technology one step at a time. Both existing and new equipment would have to operate simultaneously, without interrupting normal control functions or upsetting the process, until the cutover was complete. It was also essential that the cutover be transparent to unit operators.

From Marathon's perspective, project success hinged on close cooperation between all participants to formulate and execute a migration plan providing access to modern control technology without having to replace all of its legacy hardware and software assets. The project also required migration guidance to help the refinery develop a long-range automation plan to keep pace with future needs.

Marathon wanted project team members to work hand-in-hand to use the company's existing control system, with its large amount of proprietary programming, to maximize the daily production while minimizing production costs. Being able to migrate all Marathon's large investment in both

hardware and software to a new Honeywell platform yields large cost savings. This included steps for migrating and supporting existing control system nodes, such as controllers, HMIs, and supervisory computing nodes.

Honeywell was designated as control system integrator for the migration project, overseeing design, procurement, installation, training, and support for the new automation solution. A software provider, ProSys, handled HMI graphics and advanced controls. Marathon's process-control group coordinated design review and testing, site preparations, field wiring preparation and termination, etc.

New technology

Marathon Oil relied on Honeywell's strategy of continual technology evolution to extend its existing automaton assets while upgrading legacy controls the 30-years of hardware, field wiring, control programs, and engineering software and existing automation—to the latest Experion PKS technology. Built on a secure DCS architecture, Experion is an open system designed to improve plant operations, reduce incidents, improve decision-making, and enhance

work flows.

Unlike traditional plant automation systems, Experion integrates the entire scope of production, equally addressing the needs of operations, maintenance, engineering, and business. It provides the operator with more than just the minimal knowledge he or she may need to make decisions to run the refinery, addressing alarm management, boundary management, and operations management to improve

operational reliability.

Experion also allows operators to monitor the performance of critical plant processes and equipment and reduce process downtime and unplanned maintenance expenses.

Implementation of Experion provides a user friendly, Windows-based HMI delivering plant-wide process information such as pressures, temperatures, and flow information used to control the processes and improve monitoring of process history, trends, and averages. The system's graphical interface connects operators directly to the process and allows information to be easily accessed from anywhere in the plant. As a result, operators can react quickly and safely to changing situations.

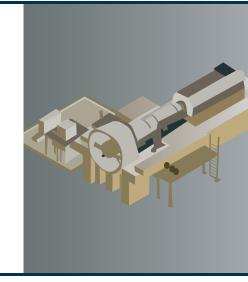
Design, installation

Marathon's "design for performance" methodology was intended to ensure a proven, robust control system. Whether it was the I/O, controllers in the field, or the computer station operator interface, the project team evaluated each system component to determine its ability to perform under extreme

The detailed design process incorpo-

Four 58-MW Rolls-Royce Trent GTGs Available for Immediate Delivery

The Rolls-Royce Trent 60 is an advanced aeroderivative gas turbine that delivers up to 58 MW of electric power in simple cycle service. At 42% efficiency, the Trent 60 is highly fuel efficient. It offers operators fast delivery and installation times, and beneficial environmental performance. All or part of the following is available for immediate sale:


- » Four Trent 60 Dual WLE GTGs rated at 58 MW with a gross heat rate of 8,592 BTU/kWe.hr (LHV)
- » Dual fuel natural gas and liquid
- » Two left-handed units; two righthanded units
- » Four generators rated at 13.8 kV, 3 phase, 60 Hz, 0.85 power factor
- » Water injection system included
- » SCR and carbon monoxide conversion systems with 80-ft stacks
- » Acoustic abatement for SCR cladding and silencer
- » Water wash system
- » Special tools

- » GSUs
- » Two transformers able to handle two 58-MW units
- » GE Prolec 90/120/150 MVA (2 units), with a low voltage 13.8 kV Delta, and a 115 kV Wye HV winding
- » Price includes new transformer oil

Two New Alstom 50-Hz Combined Cycle 140-MW Steam **Turbine Generators Available for Immediate Shipment**

These steam turbine generators (STGs) are new, 140-MW Alstom two-cylinder (HP and IP/LP) reheat condensing steam turbine generator sets suitable for combined cycle outdoor operation with axial exhaust and air-cooled (TEWAC) generator. Initial steam conditions 1900 psia/1050°F/1050°F reheat. Units include manufacturer's performance guarantees and warranties. Units may be shipped directly to your site from Alstom's European manufacturing facility.

- » Units come complete with all normally supplied auxiliaries and include factory warranties covering manufacturing defects and performance guarantees.
- » Configured as a two-cylinder machine with an HP turbine and a combined IP/LP turbine with an axial exhaust.
- » Steam inlet conditions are 1900 psia (nominal)/1050°F/1050°F.
- » Air-cooled TEWAC generator rated 165 MVA, 15.75 kV, 3 phase, 50 Hz, 3000 rpm.

Unused GE D11 HP/IP **Turbine Assembly Available** for Immediate Sale

All parts professionally stored in Pensacola, Florida

Unused GE D11 HP/IP turbine assembly and other miscellaneous parts including LP casings and 304-MW generator stator now available for immediate sale.

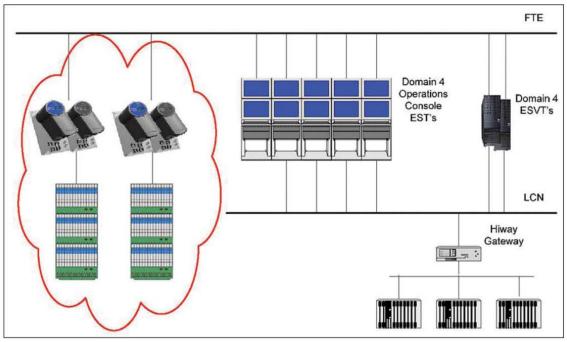
Solar Centaur 40 T4701S Turbine Generator Package Now Available

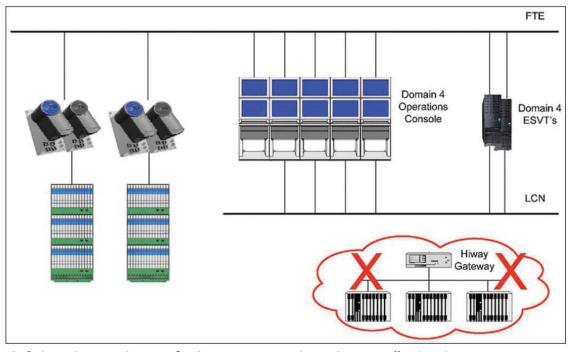
Offered by Williams Field Services Company exclusively through PennEnergy

Solar Centaur 40 T4701S Turbine Generator Package with approximately 60,000 accumulated hours at 50% load. Package was in service from 1999 until August 2007. Engine is BACT compliant with OEM 25 ppm Nox/50 ppm CO guarantee. Operates off SAB-type Ideal generator rated at 3500 kW, 4375 kVA and 13,800 volts at 60 Hz. Miscellaneous equipment includes inlet air filtration and simple exhaust systems, and auxiliary control console with start/stop/sync/control.

© 2009 PennEnergy (PEN910/0709/ogj)

For Info or Pricing Contact


Randy Hall rhall@pennenergy.com P: 713-499-6330 | Bart Zaino bzaino@thomassenamcot.com P: 817-263-3273



Processing

Phase 2 involved addition of new Experion hardware (Fig. 4).

The final control system architecture reflected an improvement over the initial migration effort (Fig. 5).

rated data flows for the entire control system, which included seven Honeywell redundant C300 controllers, one redundant C200 controller, two ACE nodes, OPC servers, process data historian interfaces, seven operator consoles, two engineering work stations, and

redundant Experion system servers. The system configuration allowed new control hardware and cabinetry to be installed in the refinery's existing infrastructure.

As part of the design process, engineers looked at the maximum data-demand case that could be experienced during a process emergency, startup, or shutdown. They also considered all aspects of the controller data load, including input/output processor (IOP) scan rates, control module execution, peer-to-peer subscription (PPS) rates, PPS for advanced application controller nodes, console station update rates, and subscribed data objects (SDOs) from controllers to operator stations. Their goal was to reduce unnecessary peer-to-peer communications among Experion C300 controllers, while ensuring a minimum of 50% free CPU under normal conditions.

Fig. 2 illustrates how the load on controllers was distributed so as to avoid the "focus effect," a situation in which all the data requesters ask for the same piece of information for a single data provider, causing the data provider to publish the same information to many different users. The system archi-

tecture allows efficient communication to operators and applications, as well as communications to and from controllers for process history, multi-variable control, alarm management, asset management systems, and other server applications.

Oil & Gas Journal / Sept. 28, 2009

In terms of HMI graphics performance, the project team defined reasonable limits for the number of parameters on each display, ensuring operators are not overwhelmed by the amount of data on their HMI panels. Parameters are updated no faster than necessary, and displays come up quickly and are uncluttered. Operators can also utilize standard shapes optimized for performance.

During electrical and instrumentation installation, new multi-conductor instrument wiring cables were run from the field junction box to the marshalling panel. The system was configured with field termination assemblies installed in separate cabinets, providing a standard 20% unassigned I/O spare capacity. Cables were prewired to the MP and FTAs, and terminations and tag labeling were reviewed during system analysis and testing.

For the control system conversion, all wire cutover was completed in the field at the junction box. Technicians reviewed each loop carefully to ensure that wires could be removed and moved while maintaining safe control of process operations.

Testing

Before shipping equipment to the refinery site and proceeding with the hot cutover, the project team tested the reliability and performance of the new plant automation technology to gain acceptance from operations personnel.

For example, the factory acceptance test involved 3 weeks of integrated testing at Honeywell's Baton Rouge facility. Project team members tested the configuration and redundancy of all hardware and reviewed configurations of all process points. They also verified graphic layouts, and all data and functionality of the objects on the graphics were accurate. This process provided an opportunity for operators to interact with the control system and provide specific feedback based on their experiences.

The project team also conducted tests simulating normal and abnormal load on the system in order to verify its performance under different operating scenarios. This included detailed trending to monitor system components throughout various levels of system loading. This simulates normal operating conditions and extreme abnormal operating conditions to ensure the system would perform under an extreme situation in which the data requests are at an extreme or abnormal level.

Results, future

Marathon's project team met its schedule for completing the 2007 control system migration, resulting in the hot cutover of 1,400 wire pairs during a 6-week period.

Phase I of the project, implemented in August 2007, provided operator stations with direct connections to the local control network for data and alarms. In addition, it provided servers with direct connection to the LCN for read/write to support history collection, advanced process control, data from third-party systems located in the field (Fig. 3).

Phase II, the addition of the new Experion hardware, was completed in November 2007. Cutover was accomplished ahead of schedule and with no disruptions to the process (Fig. 4).

The refinery hydrotreater units have now operated reliably on Experion technology for more than 2 years, including turnarounds, shutdowns, and start-ups (Fig. 5).

Operators now have a direct link to the process through a range of preconfigured standard and custom-built displays. They are better able to react to changing situations because operating, alarm, and system displays are dynamic and better represent the actual process infrastructure. The control system's familiar Windows environment further improves efficiency through ease of navigation among process displays and other applications.

In terms of performance, the open automation architecture allows multiple Experion systems, installed on different operating units, to communicate,

exchange data, and work together seamlessly. Plant personnel can connect directly to information and control networks, providing full and immediate access to critical data across the enterprise.

Based upon the success of its control system migrations, Marathon is undertaking further modernization projects. Another Data Hiway migration was completed in late 2008, and an ongoing \$3.2 billion expansion at the refinery will use Experion C300 controllers and C-Series I/O.

This expansion will increase plant capacity to 425,000 b/d, making it among the largest refineries in the US. Two additional Data Hiway migrations to Experion are planned for 2010 and 2011.

The authors

Ryan M. Schulz (rmschulz@marathonoil.com) was lead process control engineer for Marathon Petroleum Co. LLC for the Garyville, La., DCS upgrade projects that occurred 2007-08. He has worked in the refining industry for 8 years, starting in 2001 at ExxonMobil's Baton Rouge refinery before joining Marathon's refinery in Garyville in 2006. Schulz received his bachelor's in chemical engineering from Auburn University and an MBA from Louisiana State University.

Adam Joiner (Adam.Joiner@ honeywell.com) is a lead project engineer for Honeywell International Inc. Process Solutions' South Region operations' office in Baton Rouge. He works with local project management and coordinates technical aspects, project deliverables,

and customer interface associated with each HPS project. Joiner has 9 years' industry experience in several positions with Honeywell. He worked at the Geismar, La., plant and was then hired at the Baton Rouge plant. After 5 years at the Baton Rouge plant, he joined Honeywell HPS. In the past 3 years he has led some 16 projects in the oil and gas refining, pulp and paper, and chemicals in the Louisiana area. Joiner holds a bachelor's in electrical engineering from Louisiana State University.

Oil & Gas Journal / Sept. 28, 2009

QMags

Transportation

Protecting a pipeline system from cyber attack requires placing independent barriers and protections (technical countermeasures) around its supervisory control and data acquisition system in an effort to

tion system in an effort to keep communication paths secure.

The first part of this series, presented here, describes a risk assessment for cyber attack before detailing a number of potential attack avenues requiring attention as part

of a vulnerability assessment. Part 2 (next week) will detail application of a particular approach to vulnerability assessment.¹

Tim Shaw Cyber SECurity Consulting Monkton, Md.

Background

Pipelines and associated facilities have come to the attention of terrorist and extremist organizations outside of the US (including some in the UK and Canada).^{2 3} These organizations have mounted successful attacks on such facilities. The US has experienced incidents of vandalism and blackmail threats against pipeline facilities.^{4 5}

In one instance a blackmailer positioned what appeared to be explosives on the Trans Alaska Pipeline System and

sent a photo of this to the respective pipeline executives demanding money.⁶ Accidental pipeline incidents have also resulted in deaths and damage in the US and made headlines.

The US government (as well as those of Canada and the UK) maintains an incident database and has determined pipelines are attractive potential targets for future terrorist activities. Pipeline operators no longer have the option of implementing a comprehensive security program. Such a program is now essentially a mandate, even if the US Transportation Safety Administration Pipeline Security Division still officially classifies them as voluntary.

Even if it were not being strongly encouraged by various governmental agencies, a pipeline company would normally want to perform a risk assessment as part of good business practices and of establishing a legal basis for proving it has given serious attention to corporate governance, risk management, and compliance issues.

This article will not specifically address physical attacks on cyber assets, but providing a suitable level of physical security and protection for such assets is essential. If physical security isn't addressed, it may be pointless to worry about cyber security.

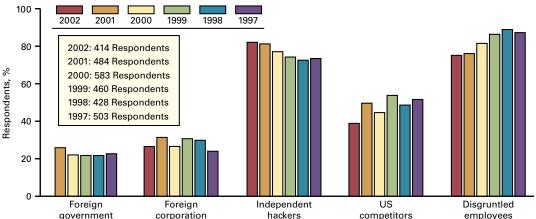

The International Standards Organization has a standard derived from a solicitation of IT management best

Fig. 1

17799-which has been heavily drawn upon by the North American Electricity Reliability Council in creating Critical Infrastructure Protection standards (CIP-002 through CIP-009) for the electric utility industry. The International Society of Automation uses some of the

practices—ISO-

Source: Computer Security Institute

Oil & Gas Journal / Sept. 28, 2009

same standard's

Fig. 2

recommendations in its SP99 Industrial Cyber Security standards work.

Both instances require an operator to define, establish, monitor, and protect both a physical security perimeter around critical cyber assets and an electronic security perimeter around those same

assets. This article will not specifically address aspects of the physical security perimeter but will assume it is being addressed as part of an overall security program including cyber security.

NERC CIP standards are available at the NERC web site and offer good suggestions regarding physical security.

A risk assessment is a structured procedure used to identify and rate the likelihood and consequences of various credible threat scenarios. Threat scenarios take (credible) threat agents and examine realistic ways in which they could exploit vulnerabilities to attack a vital asset. These include scenarios addressing physical attacks on facilities (such as trying to blow up a portion of a pipeline) or scenarios addressing cyber attacks on critical systems (like getting a malware infection into the supervisory control and data acquisition system computers).

Going through these exercises helps sort out credible threat agents, how these threat agents could attack vital assets, and, if such attacks were successful, what would be the consequences. Most organizations do not have enough detailed information to perform such analysis in any quantitative manner. But it is usually possible to make a qualitative assessment of risks and consequences.

Risk assessment

A cyber security risk assessment is predicated on the presumption an intentional, hostile attack will be

INTERFACES ALLOWING MANUAL DELIVERY TO A PC

made and will attempt to generate the maximum possible damage through compromising the automation systems. Risk analysis involves enumerating and evaluating the following basic elements of the risk equation:

- Threat agents that might realistically stage attacks.
- Assets likely to be subject to such attacks.
- Vulnerabilities enabling an attack to be successful.
- Consequences of a successful attack.

Understanding that risk and consequences are related, but not the same thing, is important in making a risk assessment. Risk attempts to combine the likelihood of an event with the consequences of an event. If an event has dire consequences but is extremely unlikely to occur, the risk is low. If an event is very likely to occur but has minimal consequences, the risk again is low.

Accounting and insurance underwriting treat risk as a financial calculation. In the industrial automation world, including pipelines, since people can die or be seriously injured, and there can be environmental harm, risk is much more difficult to quantify.

The accompanying equation provides a simple description of risk (see box below).

People tend to focus on consequences and not likelihood. Asteroids do strike the earth, and when they do, the consequences are dire. Yet we make no provisions for asteroid insurance because the likelihood of one hitting us is so close to zero the resulting risk is essentially zero.

Acting to alter either component of the equation—likelihood and consequences—can reduce risk. If you can't reduce the likelihood, then you try to reduce the consequences. If you can't alter the consequences, you try to reduce the likelihood.

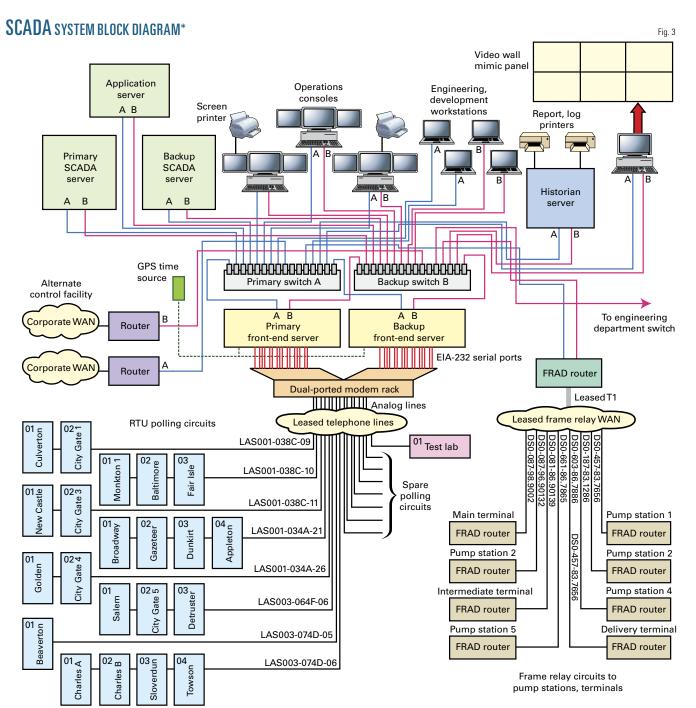
In financial terms, risk is generally stated as a financial loss experienced as the result of a successful attack; an amount that is usually annualized to reflect the probable time span during which such an attack is likely to occur. Annualized exposure is then used to justify the amount of funding invested in reducing the risk.

A strictly financial risk analysis, however, can't easily accommodate issues not conveniently expressible in dollars, such as loss of life or effects on the national economy and security. It also has difficulty determining the time span over which an event becomes likely to occur.

A qualitative assessment can address

EQUATION

Risk \approx Likelihood of an event * consequences of an event. Where: Likelihood \approx Number of threats * target attractiveness * number of vulnerabilities (1)


OIL&GAS

qMags

Transportation

*IP networking extends SCADA LAN to field sites, automation systems.

nonfinancial issues. The likelihood of an event is not always easy to define in quantitative terms. The more attractive assets are as a target, and the greater the number of vulnerabilities in a security perimeter, the more likely an attack is to occur.

Threats

The US government has already determined pipelines are attractive targets for terrorism and that credible threat agents exist who would be prepared to attack both pipelines and related facilities. The only parameter in

the presented equation the operator can manage is the number of vulnerabilities in both the physical and cyber defense perimeters that would enable a success-

Viable threat agents aside from terrorists also need to be considered when performing a risk analysis. The full list

Oil & Gas Journal / Sept. 28, 2009

FOR EXHIBIT INFORMATION, PLEASE CONTACT:

Bill Langenheim
POWER - NORTH AMERICA
P: + 1 918.832.9256
E: bill@pennwell.com

Kristin Stavinoha
PETROLEUM - NORTH AMERICA
P: +1 713.963.6283
E: kristins@pennwell.com

Linda Fransson
POWER / PETROLEUM - INTERNATIONAL
P: +44 (0) 1992.656.665
E: lindaf@pennwell.com

Svetlana Strukova
POWER / PETROLEUM - RUSSIA
P: +7 495.580.3201
E: svetlanas@pennwell.com

Hosted by:

Exhibition Managed by:

Sponsored by:

ANSPORTATION

Bridging onto a critical Lan VIA alternate communication interfaces

of potential cyber attack threat agents includes:

- Malware (malicious software such as viruses and worms).
- Human error (mistakes, poorly trained insiders, poor procedures, etc).
- · Insiders (disaffected or angry employees, contractors, etc).
- · Former insiders (terminated employees, contractors, etc.).
- Outsiders (hired hacker groups, terrorists, criminal groups, etc.).

Terrorist groups either have, or can hire, the technical expertise to stage a cyber assault, if they so choose. One could argue physically protecting a long-distance pipeline is nearly impossible, and thus a physical attack is more likely than a cyber attack. But as the government makes it harder for terrorists to enter the country or operate inside the country, a cyber attack may become more probable.

Environmental activists are also included among the threatening outsiders and have staged attacks and made threats against pipeline operators.8 Organized crime (both inside and outside the US) has found cyber crime pays well, but there is no clear and obvious motivation for those groups to target pipelines, except possibly for extortion and blackmail.

The huge range of already existing and deployed malware and the constant introduction of new malware require cyber risk analysis include it as a credible and probable threat agent. Human error often plays a part in cyber attacks. Many malware infections are delivered accidentally by uninformed or careless employees. Many successful hacker attacks on systems are enabled by employees using simple, easy-to-guess passwords. Poorly trained employees might also fall for social engineering tricks and reveal confidential information enabling a successful attack.

Employee training and education are a critical element of cyber security because human error frequently defeats expensive technical protective measures. Well developed and clearly explained policies and procedures are key components in an overall cyber security program.

Whether a given pipeline organization has current or former employees, contractors, or consultants with the needed skills and a desire to cause harm or a monetary incentive to do so is a question each organization must answer itself. But according to the US Federal Bureau of Investigation, insider-initiated incidents of intentional industrial sabotage have been increasing steadily during the past 10 years. Mergers, downsizing, reorganizing, and outsourcing have led to growing disaffection among both hourly and salaried workers.

Fig. 1 shows cyber crime statistics gathered by the Computer Security Institute over a 6-year interval. Disgruntled employees are a major factor in these statistics.

This article classifies a cyber asset as:

- A computer or intelligent device containing a microprocessor and some form of communications interface.
- · A local or wide-area communications infrastructure and associated components.
- Software (including operating) system, networking, and application programs), data, and configuration information contained by a computer or intelligent device.
- Information-documentation about any of the above (regardless of format) that would, if accessed by a threat agent, expose or create exploitable vulnerabilities.

Making critical information (such as user account information) or critical documentation (network Ethernet-MAC, IP addresses, etc.) available to a computer-knowledgeable attacker, would make his efforts to penetrate critical systems both easier and more likely to succeed.

Evaluating the consequences of a given cyber asset being disabled, disrupted, damaged, altered, revealed, or otherwise made unavailable will allow

Oil & Gas Journal / Sept. 28, 2009

further differentiation of these assets. If the consequences are unacceptable, the asset is critical.

All-encompassing security is an unrealistic and potentially hugely expensive goal. Cyber security should therefore focus primarily on protecting critical cyber assets.

Communications interfaces

In addition to developing an inventory of cyber assets, the beginning of a risk-assessment process should also diagram communications' interfaces, showing all interconnections between and among assets. This documentation, however, would itself be a cyber asset and would need to be treated as confidential information.

Table 1 shows examples of the types of things falling into each of the four cyber asset categories.

Creating a communications interconnection diagram is an essential step in risk assessment because to launch a cyber attack, the attacker must have some communications mechanism providing him access to your cyber assets. Such a communications path could be a telephone circuit, a wireless network connection, a local area network Ethernet connection, or even a connection created through an existing connection to another network (such as the internet).

One of the most basic and ubiquitous communication mechanisms usually goes unnoticed when addressing communications access: the manual transfer of files from one computer to another. Portable electronic devices and removable storage media provide literally dozens of ways in which malware can be delivered to a target system. Identification of communication access points therefore ought to include CD and DVD drives, USB, Firewire (IEEE-1394), PCMCIA and Ethernet ports, and memory stick slots (Compact Flash, SD, miniSD, microSD, and smartCards).

Many seemingly innocuous devices with a USB connection—digital cameras, digital video recorders, MP3 players, and many color printers—actually

/BER ASSETS	Table		
Category	Cyber assets examples		
Computer, microprocessor-based device with communications interface	SCADA host computer (primary and backup) Alternate site SCADA system Test-Training SCADA system SCADA system servers SCADA application processors, servers SCADA system operator consoles, workstations SCADA system engineering workstations Computer-driven map board Computer-driven alarm, annunciation system Computer-driven pager, e-mail server Computer-driven video display panels Remote terminal units Smart analyzers, instrumentation GPS time source		
Local, wide-area communication infrastructure	Ethernet switches, LAN components Routers, gateways, hubs Leased telecommunication services Corporate WAN components Analog phone lines Dial-up phone lines Uireless networking equipment Cellular communications equipment Microwave, radio systems Voice communications equipment Serial communications circuits Dedicated interfaces to partners, vendors, regulators, etc. Communications diagnostic-testing equipment		
Software, data, configuration information	Computer operating systems SCADA system software SCADA system utilities software SCADA system utilities software COPERATOR (I/O, SCADA) database configuration files RTU program-logic-calculation configuration files RTU polling configuration files RTU polling configuration files RTU polling configuration files Parameter alarm-setpoint configuration files Calculation, statistics configuration files Calculation, statistics configuration files Report, log configuration files Recent, historical trending configuration files Recent, historical trending configuration files Recent, historical trending configuration files Calculation software Recent, particulation software Leak detection, survivability software Leak detection, survivability software Product metering, accounting software Product metering, accounting software Product metering, accounting configuration files Pipeline-modeling data, software Tank farm, pipeline inventory data Tank strapping tables		
Sensitive documentation, information	 System networking information System interconnection diagrams Operator, user manuals Vendor documentation User account information Backup, cold-start procedures Company personnel information 		

contain integral file systems and storage that can deliver malware to a target system (Fig. 2). They could, of course, also be used to carry away sensitive and confidential files copied from a critical system. Installing a certain major vendor's printer driver or just accessing an infected printer over a local area network has led to viruses being spread to computer systems; the Funlove virus for example.

A good starting point for a com-

munications interconnection diagram is to create an up-to-date, detailed system block diagram for the SCADA system monitoring and operating the pipeline. This diagram should show all key components, as well as all of the communications interfaces between and among these components.

Fig. 3 is an example of a representative SCADA system block diagram, with the level of detail typical of the level

OIL&GAS

qMag

TRANSPORTATION

	nking			
Criteria	Severe	Moderate	Low	Minimal
Injury, death	One or more deaths	Life-threatening injuries, loss of limbs	Serious injuries that will mostly heal	Minor injuries
Environmental damage	Major release, contamination	Minor release, contamination	Fully containable	Within allowable limits
inancial loss	>\$1 million	<\$600,000	<\$200,000	<\$10,000
acility damage	Complete loss	Major damage	Minor damage	Easily repaired
Regulatory violations	Large fines, definite legal prosecution	Minimal fines, possible legal action	Minor infraction, no legal action	Warning only
Energy supply	Extended fuel, power shortage	Moderate fuel, power shortage	Minor fuel, power shortage	Nothing serious
Outage duration	Months	Weeks	Days	Hours

of what might be found on most such drawings. Such a diagram usually shows interconnections between and among local system components and at least the SCADA system end of interconnections to other systems and networks. But it usually won't indicate what is at the other end of a wide area network interconnection (e.g., the corporate WAN leading to the Internet).

Another important communications interface often unnoticed and undocumented consists of alternative communication interfaces installed in computers attached to critical local area networks. Most new laptop PCs come with integral Ethernet interfaces, and most will also have a built-in analog telephone modem, integral WiFi, and frequently even an integral Bluetooth wireless adapter. The same can be true of desktop PCs.

These alternate communication interfaces can make a simultaneous communication connection, offering a path through the PC to the local network connected via the Ethernet port. It is important to note the presence of these interfaces when constructing a system network interconnection diagram.

Pretty much all PCs today, when interfaced to a local area network (LAN), will be using one of the variations of Ethernet and will be running an IP protocol stack on top, causing TCP-IP networking to be used between and among local computers.

The strength of IP-based networking lies in establishing a connection, re-

gardless of the number of intermediate computers. Inside IP-networked PCs is a layer of communications software (the IP layer) that will route message traffic if it arrives at the PC on one communications connection but is not actually addressed to that particular PC. In such instances IP will look for another available communications connection and send the message off on that alternate path (Fig. 4).

If a PC is connected to a critical LAN, such as the SCADA system's LAN, and has an enabled wireless adapter, then an attacker could connect to its wireless interface and pass through the PC onto the SCADA's LAN. The same can be true for a PC with an active telephone dial-up or cellular-based connection to the Internet, while also connected via Ethernet to the SCADA LAN.

Both scenarios offer a communications path an attacker could use. It is also important to identify any computers with dual Ethernet adapters connected, via these two different Ethernet adapters, to a critical LAN and a nonsecure LAN, as the same kind of routing function can occur. An example might be a PC connected to the SCADA LAN and also to a site business LAN including an Internet connection.

This is not the same as having two Ethernet adapters for the purpose of network redundancy. The example SCADA system block diagram Fig. 3 incorporates redundant LAN switches and Ethernet interfaces, to improve system reliability and availability not with two different networks, but one replicated (redundant) network.

If Ethernet switches are used to create the local LAN(s) connecting all SCADA system components, and there are unassigned ports on those switches, such a block diagram may not show if those ports are active or disabled. An insider who can access such a switch, however, can use a free port to connect to the SCADA LAN, unless all such ports are disabled. If VLAN (virtual local area network) technology segments equipment into logical groups, this information should also be documented on such a drawing.

Such system block diagrams may, or may not, make it clear what type of communications connection technology is present for each connection. The drawing also may not clearly show what protocol support is in place on each such circuit shown. Knowing some of these details can help assess the risk of a possible cyber attack via a communications interface; the details of the interface showing the potential level of vulnerability.

Information about what the other end of each communications interface looks like, and to what the system at that other end may be connected (such as the Internet) will often be missing from a SCADA's block diagram. It is good policy to assume the other end of any communications circuit you do not fully control is not secure.

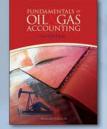
Vulnerability assessment

A risk assessment attempts to estab-

Previous Page | Contents | Zoom In | Zoom Out | Front Cover

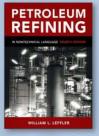


Oil & Gas Journal / Sept. 28, 2009


If you haven't shopped PENNWELL BOOKS lately, here's what you've been missing!

Computer-Aided Lean Management for the Energy Industry

by Roger N. Anderson, Albert Boulanger, John A. Johnson, and Arthur Kressner 394 Pages/Hardcover/September 2008 • ISBN 978-1-59370-157-4 • \$79.00 US


This timely new book, written by an expert team of scientists and engineers, provides a road map for transforming energy business capabilities to confront an increasingly competitive global economy. The authors extend into the energy industry the best practices available in computational sciences and the lean management principles currently being used in other leading manufacturing industries. Computer-aided lean management (CALM) technologies and methodologies can be used to dramatically improve the business operations of all energy companies.

Fundamentals of Oil & Gas Accounting, 5th Edition

by Charlotte J. Wright and Rebecca A. Gallun 784 Pages/Hardcover/August 2008 • ISBN 978-1-59370-137-6 • \$89.00 US

An excellent training manual and professional reference, Fundamentals of Oil & Gas Accounting, 5th Edition, is packed with examples, diagrams, and appendices. The scope of this text is simply unmatched. With this new edition, the book has been completely updated to reflect the current issues facing oil and gas producers operating in both U.S. and international locations.

Petroleum Refining in Nontechnical Language, Fourth Edition

by William L. Leffler

276 Pages/Hardcover/November 2008 • ISBN 978-1-59370-158-1 • \$69.00 US

William Leffler, one of the petroleum industry's top nontechnical writers, has updated his best-selling book, Petroleum Refining in Nontechnical Language. The new Fourth Edition is designed to give the reader an overview of key refining topics by using relevant analogies, easy-to-understand graphs, formulas, and illustrations. Carefully written in nontechnical language to give the reader a basic understanding of the refining industry, the book is an excellent resource for self-study, as a classroom textbook, or as a quick reference.

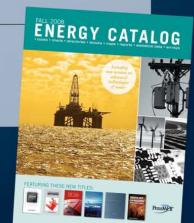
Structured Mentoring for Sure Success

by Meta Rousseau

168 Pages/Hardcover/September 2008 • ISBN 978-1-59370-173-4 • \$59.00 US

In her new book, Meta Rousseau discusses a unique approach to structured mentoring aimed at the timely, effective, and reliable transfer of corporate culture, strategic relationships, and critical knowledge and skills—the ingredients that organizations need to sustain success and steady growth. Structured mentoring enables organizations to reach these goals and to offer their employees opportunities for professional development and career advancement that would not otherwise be possible.

Subsea Pipeline Engineering, 2nd Edition


by Andrew C. Palmer and Roger A. King 650 Pages/Hardcover/August 2008 • ISBN 978-1-59370-133-8 • \$175.00 US

Subsea Pipeline Engineering was the first book of its kind, written by two of the world's most respected authorities in subsea pipeline engineering. In the new Second Edition, these industry veterans have updated their definitive reference book, covering the entire spectrum of subjects about pipelines that are laid underwater—pre-design, design, construction, installation, inspection, maintenance, and repair.

CHECK US OUT TODAY!

www.pennwellbooks.com or call for our catalog 1.800.752.9764

ANSPORTATIO

lish parameters for gauging the impact of a successful attack against a critical asset. The results (consequences) of a successful attack on a pipeline, or associated facility, be it physical or cyber in nature, can be organized into a manageable number of consequence categories. These can then be qualitatively ranked based on increasing level of seriousness, using a variety of topic-specific rating criteria.

Table 2 provides an example of a potential consequences-ranking matrix using seven criteria. The quantity and types of criteria, and their severity rankings, will vary from one pipeline organization to another, but the general need to create such a qualitative consequence matrix and make a business determination as to what level of consequences can and cannot be tolerated remains.

At this point in a risk-assessment process, the likelihood of a successful attack still must be addressed. Looking at cyber assets and considering attack scenarios in an attempt to answer the questions what would happen if this asset were made unavailable, and how could an attacker bring this about?

Answering the "How" part of the question requires an understanding of what (cyber) vulnerabilities exist and how they could be exploited by an attacker. Identifying the communications interfaces is key to making a vulnerability assessment because cyber attacks cannot occur without some form of communications channel between the attacker and critical cyber assets.

A commercially available assessment methodology and associated tools can formalize the process of making a vulnerability assessment. These methodologies can help gather relevant information about your systems and networks and help generate a vulnerability assessment based on these data.

Vulnerability assessment methods fall into two categories: active and passive. An active vulnerability assessment involves actually trying to break into one's own systems using hacker tools

such as Metasploit, Nmap, and Nessus, a process called penetration (or pen) ≠testing.

The primary problem with making an active vulnerability assessment on an operating system is the real possibility of disabling the SCADA system being assessed. Active assessments are best done on either backup systems or on test-training-support systems. Such tools require expertise and it is best to hire experts to perform an active vulnerability assessment.

Passive vulnerability assessments evaluate the available communication paths into critical cyber assets, reviewing known computer and communication system vulnerabilities before applying approaches such as fault tree analysis or failure mode effect analysis to derive a scenario probability and severity estimate. The industrial automation sector uses a number of passive vulnerability assessment methodologies (some with software tools to help automate the process), including some developed by end-user organizations.

The Idaho National Laboratory has established a national SCADA test bed for studying SCADA system vulnerabilities and has published various articles and papers providing guidance in this area. The American Petroleum Institute, in conjunction with the Process Control Systems Forum, has a working group on defining SCADA cyber security selfassessment methodologies. IBM offers the IBM Internet Security Systems ISS-X program and consulting services.

The US Department of Energy's Office of Energy Assurance offers a well written and comprehensive do-it-yourself guide to Vulnerability Assessment Methodology,9 specifically developed for the electric power industry, but highly SCADA-oriented. It addresses a comprehensive range of vulnerabilities, both physical and cyber. •

References

1. Shaw, T., "Energy Infrastructure Cyber Security: Pipelines—A Step-by-Step Guide for Keeping Pipeline Infrastructure Safe From All Cyber Attacks," Oil & Gas Journal Research Center, 2009.

- 2. "IRA bomber sentenced to 25 years: Man convicted of Tyneside oil and gas attacks gives thumbs-up to judge," The Independent, Aug. 23, 1994.
- 3. http://www.cbc.ca/canada/ british-columbia/story/2009/07/04/ bc-pipeline-bombing-encana.html
- 4. "Terror threat first for pipeline firm," AP Online, June 3, 2007.
- 5. "Alaskans on edge after terror warning," AP Online, Dec. 24, 2003.
- 6. "Trans-Alaskan Pipeline System Security: Recent Threats," Suburban Emergency Management Project, http://www.semp.us/publications/ biot_reader.php?BiotID=560
- 7. US Department of Homeland Security, Transportation Safety Administration, Statement of John Sammon, Assistant Administrator Transportation Sector Network Management, before the Subcommittee on Railroads, Pipelines, and Hazardous Materials, Committee on Transportation and Infrastructure, US House of Representatives, June 25, 2008.
- 8. "EnCana warned of more bombs," Calgary Herald, July 17, 2009.
- 9. http://www.esisac.com/publicdocs/assessment_methods/VA.pdf

The author

William T. (Tim) Shaw is senior consultant, Cyber SE-Curity Consulting. In addition, he has held senior positions at Hathaway Corp., EMC Controls, Texas Instruments, and Foxboro Corp. Shaw has more than 30 years' experience in industrial automa-

tion, including process-plant automation (DCS and PLC systems), SCADA systems, electrical substation automation, building automation, and factory automation. He holds a BS in electrical and computer engineering from University of Michigan; an MS in engineering science from Loyola College, Baltimore; a PhD in computer science from Kennedy-Western University; and a CISSP certification in cyber security from the IS(C)°. He is a senior member of the Instrument Society of America (ISA) and is also a member of the IEEE Computer Society.

Comprehensive Energy Industry Directories Electronic Directories that Always Remain Current

Energy industry Directories that provide valuable company location and contact information for thousands of companies in the worldwide and US energy industry. The most comprehensive and current directories now available for the energy industry. An annual subscription provides the user with frequent updates so that the directories always remain current.

These are electronic directories that reside on your PC desktop for easy access and use (sorry no Macs). The directory information is searchable and printable, and there are links available to company web sites. The directories use unique software that enable the information to be displayed much like a print directory. Contact information at your fingerprints, but not exportable to spreadsheet or database.

For most companies the

ELECTRONIC DIGITAL DIRECTORIES INCLUDE:

Company locations, phone and fax, Key personnel with phone and email Company operating & finance descriptions Company Links to websites

- Gas Utility Industry Worldwide
- Electric Utility Industry Worldwide
- Pipeline Industry Worldwide
- Refining & Gas Processing Industry Worldwide
- Petrochemical Industry Worldwide
- Liquid Terminals Industry Worldwide
- Drilling & Well Servicing Industry Worldwide

Operating Companies Engineers, Contractors & Service Co's Equipment Manufacturers & Suppliers Trade Associations & Regulatory Agencies

- United States & Canada E&P
- Texas E&P
- Houston & Gulf Coast E&P
- Mid Continent & Eastern US E&P
- Rocky Mountain & Western US E&P
- Offshore E&P
- International E&P (outside North America)

Directory Numbers (latest counts)								
Directory	Listings	HQ Offices	Personnel	Emails	Phone	Fax	Website	
Pipeline	22,584	7,955	67,162	52,951	46,409	21,868	6,328	
Refining & Gas Processing	20,873	8,726	58,369	45,344	39,455	20,031	6,462	
Petrochemical	18,882	8,264	50,755	38,598	35,863	19,268	5,911	
Liquid Terminals	8,457	2,983	28,325	22,693	19,142	8,933	2,637	
Gas Utility	13,768	6,645	47,288	37,118	31,035	15,903	4,873	
Electric Utility	27,586	13,117	81,906	62,193	49,642	25,432	9,160	
Drilling & Well Servicing	15,275	6,745	37,279	28,303	23,639	12,974	3,691	
Offshore E&P	9,197	3,842	30,382	25,032	16,240	8,518	3,313	
International E&P	10,796	4,647	25,495	16,684	16,869	7,459	2,818	
United States & Canada E&P	38,595	23,500	81,713	51,098	54,145	27,242	6,758	
Texas E&P	11,760	7,820	31,857	22,614	19,578	9,921	3,101	
Houston & Gulf Coast E&P	10,403	6,307	32,722	24,387	18,347	9,409	3,626	
Mid Continent & Eastern US E&P	12,370	8,407	29,854	18,954	20,142	8,900	2,576	
Rocky MTN & Western US E&P	9,539	6,256	21,603	13,119	13,860	6,710	1,647	

www.ogjresearch.com * To order: 1-918-752-9764 * Or email ORCInfo@pennwell.com

ervices/Suppliers

Global Tubing,

Dayton, Tex., has appointed Pete Sinner manager, North American sales. Sinner has

30 years of experience introducing new technology and product developments to the market for several energy companies, including NOWSCO/ NOWCAM, Santrol, and Maverick Solutions. He also served as coiled tubing champion for Quality Tubing for 12 years.

Skinner

Sinner is a member of the Intervention and Coiled Tubing Association/International Coiled Tubing Association and Society of Petroleum Engineers and has played an active role in the Coiled Tubing Consortium and other technical organizations. He forts in the U.S. and abroad. has a BS in business from Louisiana State University and an MBA in marketing from the University of Colorado at Denver.

Global Tubing is a worldwide provider

of coiled tubing products and related services for the oil and gas industry.

Boots & Coots Inc.,

Houston, has agreed to purchase Halliburton Co.'s external abrasive jet cutting systems. Following the acquisition, the abrasive jet cutting systems will be strategically positioned worldwide. Halliburton developed the system in 1991 to assist firefighting crews in Kuwait in battling more than 700 fires left after the Iraq invasion. Positioned on a burning well, the external abrasive jet cutter utilizes sand and water to abrade the wellhead or surface equipment, thus allowing the well to flow in a vertical direction, making it possible to extinguish the fire with water. Boots & Coots has worked in conjunction with Halliburton for several years coordinating the jet cutter in emergency response ef-

Boots & Coots provides a suite of integrated pressure control services to onshore and offshore oil and gas exploration companies around the world, including well intervention services such as hydraulic workovers and snubbing jobs. Boots & Coots also provides high-pressure, high-temperature rental tools through its equipment services segment.

Seahawk Drilling Inc.,

Houston, has appointed William C. (Kurt) Hoffman senior vice-president and COO. Hoffman is a 27-year veteran of the oil field services industry. Previously, he served as vice-president, worldwide marketing, at Noble Corp., where he also was vicepresident, Western Hemisphere operations, during 2000-2004. Prior to that, he held several management positions with Triton Engineering Services, including president and vice-president, international operations. Hoffman started his career in the drilling industry with Zapata Offshore Co.

Seahawk, recently spun off from Houston-based offshore drilling giant Pride International Inc., owns a fleet of 20 matsupported jack ups in the U.S. and Mexico. Seahawk has the second largest fleet of jack ups in the Gulf of Mexico.

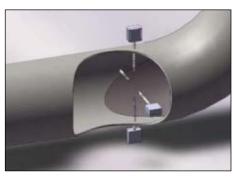
Equipment/Software/Literature

New cable lockout system for oil field valves

This new safety cable lockout system eliminates the requirement of chains and incorporates the features of the hasp right into the cable lock.

The firm says its product is suited for isolation of various types of oil field valves. requirements, dirty gas streams, wide The cable lock is lightweight, easy to use, adjustable, and Occupation Safety & Health temperature changes.

Adminstration (1910.147) compliant. The system allows as many as six operators to have individual control without compromising company safety standards, the firm


Made from high impact UV resistant polypropylene plastic, the cable lock promises to withstand corrosion and extreme weather conditions.

The system consists of a base and cover screwed together and accommodates a flexible, looped 6 ft PVC coated multistranded galvanized cable.

Source: LOCKOUT TECH, 80 Huntington St., Suite 616, Huntington Beach, CA 92648

New refinery flowmeter

The new Multi-Trak Model 670S flowmeter measures mass flow rates in large refinery ducts or stacks that have nonuniform velocity profiles, high turndown temperature ranges, and fast velocity and

The unit dynamically compensates for changes in the flow profile by using as many as four independent mass flow sensing points to measure the instantaneous average gas mass flow velocity. The 670S's user friendly microprocessor-based human machine interface (HMI) controls all functions of the system. The HMI is used to collect, visualize, and store flow data, as well as set up the individual sensor points, thus allowing the entire system to be easily configured in the field.

Source: **Sierra Instruments**, 5 Harris Court, Bldg. L, Monterey, CA 93940.

Oil & Gas Journal / Sept. 28, 2009

PennEnergy... WHAT IS IT?

PennEnergy.com is the only source you need for energy news, research, and insight. Nowhere else will you find this much energy-related content in one location.

- Coverage of both the Oil & Gas and the Power industries
- 19 Topic Centers to drill down into your areas of interest
- Content submitted by top energy publications like Oil & Gas Journal, Power Engineering, and Renewable Energy World
- Ability to rate, comment on, and submit articles
- Over 1,800 research and data products
- Access to over 50,000 book titles related to the energy industry

- Job postings and career advice for job seekers
- Recruiting solutions for employers and recruiters
- Latest news and information delivered directly to you through e-newsletters
- Blogs from experienced industry journalists and industry experts
- Information on all of the newest products and services from Oil, Gas, & Petrochem Equipment

We could go on but I think you have the idea.

PennEnergy.com is the best source for all of your petroleum and power industry news, research, and insight. Visit us today and find out for yourself.

www.PennEnergy.com

Statistics

IMPORTS OF CRUDE AND PRODUCTS

	— Distri 9-11 2009	icts 1-4 — 9-4 2009	— Dist 9-11 2009	trict 5 — 9-4 2009 — 1,000 b/d	9-11 2009	— Total US – 9-4 2009	*9-12 2008
Total motor gasoline Mo. gas. blending comp Distillate Residual Jet fuel-kerosine Propane-propylene Other	675 523 129 217 42 93 472	978 799 221 367 45 169 (164)	26 23 18 50 43 4 33	7 0 14 29 48 4 4	701 546 147 267 85 97 505	985 799 235 396 93 173 (122)	977 635 131 258 79 168 612
Total products	2,151	2,415	197	144	2,348	2,559	2,860
Total crude	7,920	8,064	983	1,031	8,903	9,095	8,510
Total imports	10,071	10,479	1,180	1,175	11,251	11,654	11,370

PURVIN & GERTZ LNG NETBACKS—SEPT. 18, 2009

		Liquefaction plant						
Receiving terminal	Algeria	Malaysia	Nigeria	Austr. NW Shelf MMbtu ————	Qatar	Trinidad		
Barcelona Everett Isle of Grain Lake Charles Sodegaura Zeebrugge	5.74 2.67 2.69 0.95 4.90 5.11	3.72 1.41 1.44 0.10 7.10 3.33	4.94 2.33 2.11 0.81 5.16 4.47	3.61 1.55 1.47 0.26 6.81 3.27	4.28 1.21 1.24 0.25 6.10 3.64	4.87 2.94 2.14 1.52 4.01 4.53		

Definitions, see OGJ Apr. 9, 2007, p. 57.

Additional analysis of market trends is available through OGJ Online, Oil & Gas Journal's electronic information source, at http://www.ogjonline.com.

OGJ CRACK SPREAD

*9-18-09	*9-19-08 —\$/bbl —	Change	Change, %
74 27	116.90	-42 62	-36.5
7.78	24.47	-16.69	-68.2
ICES			
75.98	110.13	-34.15	-31.0
71.36	97.29	-25.93	-26.7
4.62	12.84	-8.22	-64.0
80.29	109.65	-29.36	-26.8
73.72	97.46	-23.74	-24.4
8.21	12.19	-3.97	-32.6
	74.27 66.49 7.78 ICES 75.98 71.36 4.62 80.29 73.72	74.27 116.90 66.49 92.42 7.78 24.47 ICES 75.98 110.13 71.36 97.29 4.62 12.84 80.29 109.65 73.72 97.46	74.27 116.90 -42.62 66.49 92.42 -25.93 7.78 24.47 -16.69 ICES 75.98 110.13 -34.15 71.36 97.29 -25.93 4.62 12.84 -8.22 80.29 109.65 -29.36 73.72 97.46 -23.74

^{*}Average for week ending.

Crude and product stocks

District	Crude oil	—— Motor	gasoline —— Blending comp.¹	Jet fuel, kerosine ——— 1,000 bbl ———	Distillate	oils ——— Residual	Propane- propylene
PADD 1	14,701 78,313 171,618 14,966 53,155	54,061 50,231 71,174 5,870 26,364	35,390 25,302 39,151 1,855 21,193	12,591 7,808 15,488 498 8,767	71,767 33,582 47,490 3,419 11,535	14,377 1,088 13,942 223 4,272	4,302 30,457 33,968 11,844
Sept. 11, 2009 Aug. 4, 2009 Sept. 12, 2008 ²	332,753 337,482 291,706	207,700 207,153 184,634	122,891 122,648 95,359	45,152 45,341 39,084	167,793 165,556 129,625	33,902 33,583 35,980	70,571 70,718 55,526

¹Includes PADD 5. ²Revised.

REFINERY REPORT—SEPT. 11, 2009

	REFINERY			REFINERY OUTPUT				
District	Gross inputs	ATIONS ——— Crude oil inputs) b/d ————	Total motor gasoline	Jet fuel, kerosine	——— Fuel Distillate —— 1,000 b/d ——	oils ——— Residual	Propane- propylene	
PADD 1 PADD 2 PADD 3 PADD 4 PADD 5	1,254 3,356 7,602 576 2,552	1,248 3,338 7,442 579 2,442	2,361 2,076 2,809 333 1,453	77 234 699 31 379	430 896 2,173 187 474	82 49 287 14 98	53 244 696 1 62 —	
Sept. 11, 2009	15,340 15,385 13,632	15,049 15,105 13,237	9,032 9,240 8,326	1,420 1,448 1,323	4,160 4,143 3,800	530 600 452	1,055 1,102 956	
	17,644 Opera	ble capacity	86.9 utilizati	on rate				

¹Includes PADD 5. ²Revised. Source: US Energy Information Administration Data available in OGJ Online Research Center.

Oil & Gas Journal / Sept. 28, 2009

^{*}Revised.
Source: US Energy Information Administration
Data available in OGJ Online Research Center.

Source: Purvin & Gertz Inc.
Data available in OGJ Online Research Center.

Source: Oil & Gas Journal
Data available in OGJ Online Research Center.

Source: US Energy Information Administration Data available in OGJ Online Research Center.

OGJ GASOLINE PRICES

	Price ex tax 9-16-09	Pump price* 9-16-09 — ¢/gal —	Pump price 9-17-08
/Approx prince for celf of	onioo unlo	adad gaaaling	۸
(Approx. prices for self-s Atlanta	205.4	251.9	368.8
Baltimore	210.8	252.7	372.7
Boston	212.9	254.8	369.1
Buffalo	205.9	266.8	363.9
Miami	219.2	270.8	365.7
Newark	211.1	243.7	358.7
New York	199.9	260.8	368.8
Norfolk	206.8	245.2	363.1
Philadelphia	211.1	261.8	371.1
Pittsburgh	212.0	262.7	367.7
Wash., DC	223.4	261.8	366.0
PAD I avg	210.8	257.6	366.9
Chicago	212.1	276.5	402.0
Cleveland	214.9	261.3	369.9
Des Moines	211.0	251.4	363.9
Detroit	217.1	276.5	373.5
Indianapolis	203.1	262.5	366.5
Kansas City	200.2	236.2	364.5
Louisville	218.4 199.4	259.3 239.2	375.9
Memphis Milwaukee	212.0	263.3	360.9 372.9
MinnSt. Paul	216.1	260.1	368.9
Oklahoma City	191.9	227.3	357.3
Omaha	188.0	233.3	365.9
St. Louis	195.3	231.3	361.5
Tulsa	188.9	224.3	355.8
Wichita	193.0	236.4	358.5
PAD II avg	204.1	249.3	367.9
Albuquerque	199.6	236.0	362.9
Birmingham	202.7	242.0	361.6
Dallas-Fort Worth	203.7	242.1	349.3
Houston	200.6	239.0	365.0
Little Rock	194.9	235.1	362.6
New Orleans	203.6	242.0	368.9
San Antonio	204.8	243.2	363.6
PAD III avg	201.4	239.9	362.0
Cheyenne	224.0	256.4	352.8
Denver	225.0	265.4	385.4
Salt Lake City	216.0	258.9	370.8
PAD IV avg	221.6	260.2	369.7
Los Angeles	239.3	306.4	377.8
Phoenix	229.8	267.2	359.3
Portland	245.0	288.4	363.7
San Diego	241.3	308.4	385.1
San Francisco	248.3	315.4	393.6
Seattle	247.4	303.3	370.0
PAD V avg	241.9	298.2	374.9
Week's avg Aug. avg	212.0 209.9	257.6 255.5	367.8 375.3
July avg	205.6	251.2	405.7
2009 to date	177.3	222.9	_
2008 to date	310.1	354.0	_

*Includes state and federal motor fuel taxes and state sales tax. Local governments may impose additional taxes. Source: Oil & Gas Journal.
Data available in OGJ Online Research Center.

REFINED PRODUCT PRICES

TIET INCED I HODOOT	1 11101	-0	
9-	11-09 ¢/gal		9-11-09 ¢/gal
Spot market product pr	ices		
Los Angeles	77.55 72.80 03.55 80.73	Heating oil No. 2 New York Harbor	. 168.40 . 172.81 . 181.19 . 148.69 . 153.81 . 179.03 . 155.61

Source: DOE Weekly Petroleum Status Report. Data available in OGJ Online Research Center

BAKER HUGHES RIG COUNT

	9-18-09	9-19-08
Alabama	4	Į
Alaska	8	1
Arkansas	42	59
California	20	47
Land	19	46
Offshore	1	
Colorado	45	116
Florida	2	3
Illinois	1	Ų
Indiana	4 23	10
Kansas Kentucky	23 9	12
Louisiana	147	19
N. Land	99	89
S. Inland waters	7	2
S. Land	16	25
Offshore	25	56
Maryland	0	(
Michigan	0	2
Mississippi	11	17
Montana	3	10
Nebraska	0	(
New Mexico	46	9
New York	2	7.0
North Dakota	46	73
Ohio	8 69	10
Oklahoma	55	21 ²
Pennsylvania South Dakota	00	2,
Texas	382	947
Offshore	4	1
Inland waters	Ó	
Dist. 1	19	27
Dist. 2	11	35
Dist. 3	41	59
Dist. 4	31	93
Dist. 5	69	185
Dist. 6	46	135
Dist. 7B	15	29
Dist. 7C	22	7′
Dist. 8	61 14	130 29
Dist. 8A Dist. 9	22	43
Dist. 10	27	100
Utah	16	42
West Virginia	20	28
Wyoming	37	83
Others—HI-1; NV-2; OR-1; TN-1;		
VA-5	10	13
Total US Total Canada	1,010 214	2,018 42
Grand total	1,224	2.443
US Oil rigs	293	417
US Gas rigs	705	1,589
Total US offshore	32	7/
Total US cum. avg. YTD	1,084	1,868

Rotary rigs from spudding in to total depth. Definitions, see OGJ Sept. 18, 2006, p. 42.

Source: Baker Hughes Inc. Data available in OGJ Online Research Center.

SMITH RIG COUNT

Proposed depth,	Rig count	9-18-09 Percent footage*	Rig count	9-19-08 Percent footage*
0-2.500	49	6.1	93	3.2
2,501-5,000	77	70.1	123	52.0
5,001-7,500	108	18.5	275	16.7
7,501-10,000	212	4.2	466	2.1
10,001-12,500	212	13.2	445	1.5
12,501-15,000	146	_	352	_
15,001-17,500	132	_	141	—-
17,501-20,000	54	_	84	_
20,001-over	33	_	22	_
Total	1,023	11.1	2,001	6.4
INLAND I AND	12 977		16 1,970	
OFFSHORE	34		15	

*Rigs employed under footage contracts. Definitions, see OGJ Sept. 18, 2006, p. 42.

Source: Smith International Inc. Data available in OGJ Online Research Center.

OGJ PRODUCTION REPORT

	¹ 9-18-09 1,000	² 9-19-08 b/d
(Crude oil and lease	e condensate)	
Alabama	21	21
Alaska	670	647
California	655	656
Colorado	64	66
Florida	7	5
Illinois	29	27
Kansas	109	115
Louisiana	1,410	538
Michigan	18	18
Mississippi	62	60
Montana	90	86
New Mexico	160	158
North Dakota	190	188
Oklahoma	178	169
Texas	1,374	1,140
Utah	61	62
Wyoming	147	146
All others	<u>66</u>	73
Total	5,311	4,175

¹OGJ estimate. ²Revised.

Source: Oil & Gas Journal.

Data available in OGJ Online Research Center.

US CRUDE PRICES

	9-18-09 \$/bbl*
Alaska-North Slope 27°	65.67
South Louisiana Śweet	73.75
California-Kern River 13°	63.40
Lost Hills 30°	71.90
Wyoming Sweet	63.29
East Texas Sweet	68.00
West Texas Sour 34°	63.50
West Texas Intermediate	68.50
Oklahoma Sweet	68.50
Texas Upper Gulf Coast	61.50
Michigan Sour	60.50
Kansas Common	67.50
North Dakota Sweet	58.25
*Current major refiner's posted prices except North Cl	one loge

*Current major refiner's posted prices except North Slope lags 2 months. 40° gravity crude unless differing gravity is shown.

Source: Oil & Gas Journal.
Data available in OGJ Online Research Center.

World Crude Prices

\$/bbl¹	9-11-09
United Kingdom-Brent 38°	68.56
Russia-Urals 32°	68.11
Saudi Light 34°	66.33
Dubai Fateh 32°	68.07
Algeria Saharan 44°	68.61
Nigeria-Bonny Light 37°	70.20
Indonesia-Minas 34°	71.88
Venezuela-Tia Juana Light 31°	68.54
Mexico-Isthmus 33°	68.43
OPEC basket	68.35
Total OPEC ²	67.69
Total non-OPEC ²	67.98
Total world ²	67.82
US imports ³	67.23

¹Estimated contract prices. ²Average price (FOB) weighted by estimated export volume. ³Average price (FOB) weighted by estimated import volume.

Source: DOE Weekly Petroleum Status Report. Data available in OGJ Online Research Center.

US NATURAL GAS STORAGE¹

	9-11-09	9-4-09 —— bcf –	9-11-08	Change, %
		DCI -		/0
Producing region	1,110	1,099	801	38.6
Consuming region east	1,876	1,831	1,764	6.3
Consuming region west	472	462	397	18.9
Total US	3,458	3,392	2,962	16.7
			Change,	
	June 09	June 08	%	
Total US ²	2,752	2,171	26.8	

¹Working gas. ²At end of period. Source: Energy Information Administration Data available in OGJ Online Research Center.

Oil & Gas Journal / Sept. 28, 2009

Cha. vs.

Chg. vs.

Statistics

WORLD OIL BALANCE

	2009 1st		2007			
		4th	3rd	2nd	1st	4th
	qtr.	qtr.	qtr. Milli	qtr. on b/d —	qtr.	qtr.
DEMAND						
OECD						
US & Territories	19.06	19.53	19.19	20.04	20.31	20.90
Canada	2.19	2.26	2.28	2.19	2.31	2.38
Mexico	2.05	2.07	2.14	2.19	2.12	2.16
Japan	4.72	4.71	4.34	4.63	5.45	5.25
South Korea	2.34	2.14	2.10	2.11	2.35	2.3
France	2.02	2.04	1.95	1.95	2.01	2.0
Italy	1.55	1.62	1.64	1.64	1.66	1.7
United Kingdom	1.73	1.73	1.65	1.73	1.73	1.7
Germany	2.57	2.65	2.71	2.43	2.49	2.5
Other OECD		2.00			2.40	
Europe	7.05	7.40	7.59	7.32	7.44	7.6
Australia & New						
Zealand	1.08	1.12	1.10	1.11	1.10	1.1
Total OECD	46.36	47.27	46.69	47.34	48.97	49.8
ION-OECD						
China	7.55	7.56	8.10	7.89	7.86	7.6
FSU	4.11	4.38	4.35	4.31	4.30	4.3
Non-OECD Europe	0.77	0.80	0.80	0.79	0.79	0.8
Other Asia	9.09	8.76	8.96	9.61	9.52	9.2
Other non-OECD	15.31	15.55	16.40	16.03	15.12	15.9
Total non-OECD	36.83	37.05	38.61	38.63	37.59	38.0
OTAL DEMAND	83.19	84.32	85.30	85.97	86.56	87.8
SUPPLY						
OECD						
US	8.78	8.46	8.18	8.75	8.67	8.5
Canada	3.39	3.40	3.40	3.72	3.38	3.4
Mexico	3.06	3.12	3.15	3.19	3.29	3.3
North Sea	4.40	4.37	4.06	4.31	4.44	4.5
Other OECD	1.55	1.60	1.60	1.58	1.53	1.5
Total OECD	21.18	20.95	20.39	21.05	21.31	21.4
ION-OECD						
FSU	12.60	12.46	12.42	12.60	12.59	12.6
China	3.92	3.99	3.97	4.00	3.94	3.8
Other non-OECD	12.50	12.38	12.32	12.15	12.22	12.1
Total non-OECD.	12.50	12.50	12.32	12.15	12.22	12.1
non-OPEC	29.02	28.83	28.71	28.75	28.75	28.6
PEC*	33.23	35.16	36.18	35.84	35.72	36.1
OTAL SUPPLY	83.43	84.94	85.28	85.64	85.78	86.2

OECD TOTAL NET OIL IMPORTS

	May	Apr.	Mar.	May	pre	vious ear ——
	2009	2009	2009 — Million b	2008	Volume	%
Canada	-1,342	-1,283	-1,339	-1,259	-83 1 F20	6.6
US Mexico	9,581 -1.039	10,073 -1.065	10,636 -1.102	11,109 -1.120	-1,528 81	-13.8 -7.2
France	1.798	1,641	2.025	1,720	78	4.5
Germany	2,146	2,273	2,440	2,049	97	4.7
Italy	1,532	1,481	1,441	1,441	91	6.3
Netherlands	937	1,060	820	1,005	-68	-6.8
Spain	1,330	1,376	1,463	1,496	-166	-11.1
Other importers	3,682	3,608	4,063	3,925	-243	-6.2
Norway	-1,912	-2,098	-2,413	-1,960	48	-2.4
United Kingdom	-85	-16	125	-112	27	-24.1
Total OECD Europe	9,428	9,325	9,964	9,564	-136	-1.4
Japan	3,973	4,089	4,374	4,681	-708	-15.1
South Korea	1,964	1,965	2,162	2,251	-287	-12.7
Other OECD	832	927	955	962	-130	-13.5
Total OECD	23,397	24,031	25,650	26,188	-2,791	-10.7

Source: DOE International Petroleum Monthly Data available in OGJ Online Research Center.

OECD* TOTAL GROSS IMPORTS FROM OPEC

	May	Anz	Mar.	Mov	previo	
	2009	Apr. 2009	2009	May 2008	Volume	%
			— Million b/	1		
Canada	339	386	369	375	-36	-9.6
US	4,471	4,754	5,215	5,913	-1,442	-24.4
Mexico	10	29	23	20	-10	-50.0
France	855	567	689	837	18	2.2
Germany	450	464	347	471	-21	-4.5
Italy	927	963	1,047	1,212	-285	-23.5
Netherlands	516	533	516	640	-124	-19.4
Spain	758	653	689	789	-31	-3.9
Other importers	1,021	1,036	1,090	1,243	-222	-17.9
United Kingdom	315	257	311	303	12	4.0
Total OECD Europe	4,842	4,473	4,689	5,495	-653	-11.9
Japan	3,503	3.629	3.806	4.105	-602	-14.7
South Korea	1,950	2,072	2,274	2,306	-356	-15.4
Other OECD	522	482	535	604	-82	-13.6
Total OECD	15,637	15,825	16,911	18,818	-3,181	-16.9

^{*}Organization for Economic Cooperation and Development. Source: DOE International Petroleum Monthly Data available in OGJ Online Research Center.

US PETROLEUM IMPORTS FROM SOURCE COUNTRY

	May Apr.			erage	previous		
	2009	2009	2009 — 1,000 b/d —	2008	Volume	%	
Algeria	272 505 93 600 1,079 1,341 581 4,471	612 462 105 733 1,021 891 930 4,754	489 566 173 649 1,109 1,168 863 5,017	546 478 231 1,106 1,543 1,160 1,013 6,077	-57 88 -58 -457 -434 8 -150 -1,060	-10.4 18.4 -25.1 -41.3 -28.1 0.7 -14.8 -17.4	
Canada	2,206 1,186 171 250 313 2,999 7,125	2,281 1,289 112 424 290 2,823 7,219	2,395 1,292 129 261 313 2,878 7,268	2,539 1,319 117 211 341 2,410 6,937	-144 -27 12 50 -28 468 331	-5.7 -2.0 10.3 23.7 -8.2 19.4 4.8	
TOTAL IMPORTS	11,596	11,973	12,285	13,014	-729	-5.6	

Source: DOE Monthly Energy Review Data available in OGJ Online Research Center.

OIL STOCKS IN OECD COUNTRIES*

	May	Apr.	Mar.	May	pre	j. vs. vious ear ——
	2009	2009	2009 — Million bl	2008	Volume	%
FranceGermany	176	173	178	177	-1	-0.6
	281	279	278	277	4	1.4
Italy	133	132	131	136	-3	-2.2
United Kingdom	92	98	100	99	-7	-7.1
Other OECD Europe Total OECD Europe	720	723	724	685	35	5.1
	1,402	1,405	1,411	1,374	28	2.0
Canada	189	191	194	193	–4	-2.1
US	1,829	1,812	1,795	1,674	155	9.3
Japan	609	606	611	617	–8	-1.3
South Korea Other OECD Total OECD	149	152	155	146	3	2.1
	112	114	110	106	6	5.7
	4.290	4.280	4.276	4.110	180	4.4
TOTAL OF CO.	4,230	4,200	4,270	4,110	100	4.4

Oil & Gas Journal / Sept. 28, 2009

^{*}Includes Angola. Source: DOE International Petroleum Monthly Data available in OGJ Online Research Center.

^{*}End of period. Source: DOE International Petroleum Monthly Report Data available in OGJ Online Research Center.

lassified Advertising

Your marketplace for the oil and gas industry

DEADLINE for CLASSIFIED ADVERTISING is 10 A.M. Tuesday preceding date of publication. Address advertising inquiries to CLASSIFIED SALES, 1-800-331-4463 ext. 6301, 918-832-9301, fax 918-832-9201, email: glendah@pennwell.com.

• DISPLAY CLASSIFIED: \$390 per column inch, one issue. 10% discount three or more CONSECUTIVE issues. No extra charge for blind box in care. Subject to agency commission. No 2% cash discount.

- UNDISPLAYED CLASSIFIED: \$4.00 per word per issue. 10% discount for three or more CONSECUTIVE issues. \$80.00 minimum charge per insertion. Charge for blind box service is \$56.00 No agency commission, no 2% cash discount. Centered/Bold heading, \$9.00 extra.
- COMPANY LOGO: Available with undisplayed ad for \$83.00. Logo will be centered above copy with a maximum height of 3/8 inch.
- NO SPECIAL POSITION AVAILABLE IN CLASSIFIED SECTION.
- PAYMENT MUST ACCOMPANY ORDER FOR CLASSIFIED AD.

EMPLOYMENT

SEEKING EXPERTS IN THE FIELD OF MINING AND ENERGY/NATURAL RESOURCES DEVELOPMENT

International Relief and Development Inc (IRD) is a non-profit organization specializing in international development and humanitarian assistance. IRD's mission is to reduce the suffering of the world's most vulnerable groups and provide tools and resources needed to increase their self-sufficiency. IRD has projects throughout Afghanistan and is accepting applications for mining positions with our HRLS Project.

IRD is currently seeking to fill four positions that will work closely with the Afghanistan Ministry of Mines on a USAID-funded project regarding the development of energy and natural resources (including mineral resources). The positions we seek to fill are:

- Senior Economic Advisor: Conducts oil, gas and mineral resources feasibility studies and undertakes a key role in short and long-term investment analysis for natural resources development in Afghanistan.
- Senior Legal/Institutional Advisor: Expected to understand all aspects of legal and institutional matters concerning energy and natural resource development in Afghanistan and play a key role in moving forward projects as directed by the USAID Afghanistan Office of Infrastructure.
- Senior Mining Advisor: Must understand the use of new technology for mining in mountainous areas. S/he is also expected to be familiar with technology used in exploration and exploitation of minerals and to follow international safety procedures.
- Senior Petroleum Engineering Advisor: Expected to understand all studies on petroleum resources in Afghanistan and undertake a key role in gathering additional technical information on the existence of petroleum reserves in Afghanistan.

All positions require 15 years of experience in their respective fields, and at least a bachelor's degree (advanced degree preferred). Previous experience working with NGOs or USAID-funded projects is highly preferred. All applicants must be able to communicate in English, and knowledge of regional languages is a plus.

To learn more, and for information on how to apply, please visit us online at www.ird.org and click on the 'Careers' section of our website.

ConocoPhillips Company in Houston, TX seeks Upstream Long Range Planning Coordinator. Qualified applicants will possess a bachelors in accounting or finance or economics or engineering plus six years or more financial exploration and production business experience. To submit resume, please visit www.conocophillips.com/careers. Put Job code

ConocoPhillips Company in Belle Chasse, LA seeks experienced professionals for the following positions:

Process Engineers 007HI

Turnaround Coordinator 007JN

For education and experience requirements and to submit resume, please visit

www.conocophillips.com/careers. Must put job code on resume.

Sonangol USA Company in Houston, TX seeks Financial Analyst. Qualified applicants will possess a bachelor's in economics or finance and three years experience in coordination of audit procedures, financial/business analysis and budget. To submit resume, please send via fax to 281-920-7666. Must list job code LDM504378 on resume.

EMGS Americas, Inc. in Houston TX seeks Geoscientist for acquisition, processing & interpretation of CSEM & MMT data. Req's: Master's in Geophysics or Geology w/research in 3D modeling & inversion of CSEM & MMT data. Please fax or e-mail resume to 281-920-5611 or sp@emgs.com

EQUIPMENT FOR SALE

Water, Oil and Gas Treatment/Conditioning **Equipment**

For Sale, Lease, Contract Service

Separators, Hydrocyclones, Float Cells, Filtration, Electrostatic Oil Treaters, Amine Units, Glycol Units, JT-Plants, Refrigeration Units, LACT Units

For Information Call 713.849.7520 www.NATCOGroup.com

MARCELLUS WATER

Avoid the Controversy 3 mill gal per month fully DRBC permitted for gas drilling. Includes storage tank. Lock up for 5 or 10 years. 99 year lease available. Hancock NY 516 353 0213

EQUIPMENT FOR SALE

FOR SALE / RENT

5.2 MW MOBILE GEN SETS CALL: 800-704-2002

SOLAR **TAURUS 60**

- GAS LOW NOx (OIL)
- 60 Hz 13.8KV or 50 Hz 11KV
- LOW HOUR SOLAR SERVICED

DIESELS • TURBINES • BOILERS

24/7 EMERGENCY SERVICE IMMEDIATE DELIVERY

www.wabashpower.com | info@wabashpower.com Phone: 847-541-5600 Fax: 847-541-1279

444 Carpenter Avenue, Wheeling, IL 60090

SURPLUS GAS PROCESSING/REFINING **EOUIPMENT**

NGL/LPG PLANTS: 10 - 600 MMCFD 60 - 5000 GPM AMINE PLANTS: **SULFUR PLANTS:** 10 - 1200 TPD FRACTIONATION: 1000 - 15,000 BPD **HELIUM RECOVERY: 75 & 80 MMCFD**

NITROGEN REJECTION: 25 - 80 MMCFD ALSO OTHER REFINING UNITS

We offer engineered surplus equipment solutions.

Bexar Energy Holdings, Inc. Phone 210 342-7106 Fax 210 223-0018 www.bexarenergy.com Email: info@bexarenergy.com

Deep Water Oil & Gas Tubulars, Topside and Subsea <u>NEW</u> Equipment Liquidation – All equipment designed for use in 4700' of water in a 10 k application, including pipe, casing, christmas trees, umbilical line, sub-surface valve assemblies, joints & valves and hoists. ALL EQUIPMENT NEW. PURCHASED FOR 50+ MILLION. Visit www.liquitec.net for complete asset list or call 516-280-3185 x111.

Oil & Gas Journal / Sept. 28, 2009

Classified Advertising

EQUIPMENT FOR SALE

REFRIGERATION PLANTS

5 and 12 MMSCFD, 1100, T. H. RUSSELL 4 and 7 MMSCFD, 1000, NATCO 8 MMSCFD, DARENCO, 1-3 MMSCFD PROCESS EOPT.

OTHERS AVAILABLE

J. T. PLANTS

0.5 - 30 MMSCFD

DEHYDRATORS 8" - 36" 5 GPM AMINE

5,000 - 30,000 GALLON LPG TANKS

318-425-2533, 318-458-1874

regardres@aol.com

AUCTION

BUSINESS OPPORTUNITY

LOOKING FOR INVESTOR

308 million barrels proven. 503-253-7400, Fax 503-253-8888 Email: diamonda@teleport.com

Want to purchase minerals and other oil/gas interests. Send details to: P.O. Box 13557, Denver, CO 80201.

GEOLOGIST has extensive Gulf Coast 2-D seismic data-base with numerous mapped prospects and anomalies. Seeks funding for additional seismic, leasing and drilling. 713-504-7291.

CONSULTANT

Brazil: EXPETRO can be your guide into this new investment frontier.

Effective strategic analysis, quality technical services, compelling economic/regulatory advice, and realistic approach regarding Brazilian business environment-120 specialists upstream, downstream gas and biofuels.

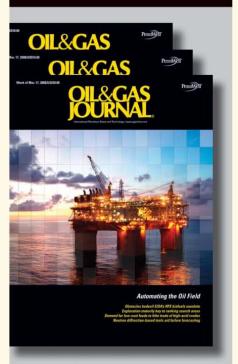
Email: contato@expetro.com.br Web: www.expetro.com.br-Rio de Janeiro, Brazil

STRUCTURES

Use

OGJ

Classifieds


Contact: Glenda Harp

+1-918-832-9301 or

1-800-331-4463, ext. 6301

Fax: +1-918-832-9201

Why just tell them you're an expert when you can show them?

Article reprints are a low-cost, credible way to promote your business or technology.

For more information contact Sherry Humphrey at 918.832.9379 or sherryh@pennwell.com.

78 Oil & Gas Journal / Sept. 28, 2009

Advertising Sales / Advertisers Index

Houston

Director of Sales, Tripp Wiggins; Tel: (713) 963-6244, Email: trippw@pennwell.com. U.S. Sales Manager, Marlene Breedlove; Tel: (713) 963-6293, E-mail: marleneb@pennwell.com. Regional Sales Manager, Mike Moss; Tel: (713) 963-6221, E-mail: mikem@pennwell.com. PennWell - Houston, 1455 West Loop South, Suite 400, Houston, TX 77027. Fax: (713) 963-6228

South/Southwest /Texas/Northwest/Midwest/Alaska Marlene Breedlove, 1455 West Loop South, Suite 400,

Houston, TX 77027; Tel: (713) 963-6293, Fax: (713) 963-6228; E-mail: marleneb@pennwell.com

Northeast/Texas/Southwest

Mike Moss, 1455 West Loop South, Suite 400, Houston, TX 77027; Tel: (713) 963-6221, Fax: (713) 963-6228; E-mail: mikem@pennwell.com

Louisiana/Canada

Stan Terry, 1455 West Loop S. Ste. 400, Houston, TX 77027; Tel: (713) 963-6208, Fax: (713) 963-6228; E-mail: stant@pennwell.com

Scandinavia/Denmark/The Netherlands/Middle

David Betham-Rogers, 11 Avenue du Marechal Leclerc, 61320 Carrouges, France; Tel: 33.2.33.282584, Fax: 33.2.33.274491; E-mail: davidbr@pennwell.com

United Kingdom

Stephen Wilding, 188 Gordon Avenue, Camberley, GU15 2NT United Kingdom Tel: +44.7545.829.891, Fax: +44 7545.829.891; E-mail: stephenw@pennwell.com

France/Belgium/Spain/Portugal/Southern

Switzerland/Monaco

Daniel Bernard, 8 allee des Herons, 78400 Chatou, France; Tel: 33(0)1.3071.1119, Fax: 33(0)1.3071.1119; E-mail: danielb@pennwell.com

Germany/Austria/Northern/Switzerland/Eastern Europe/Russia/Former Soviet Union

Sicking Industrial Marketing, Kurt-Schumacher-Str. 16, 59872, Freienohl, Germany. Tel: 49(0)2903.3385.70, Fax: 49(0)2903.3385.82; E-mail: wilhelms@pennwell.com; www. sicking.de < http://www.sicking.de> Andreas Sicking

e.x.press sales division, ICS Convention Design Inc. 6F, Chiyoda Bldg., 1-5-18 Sarugakucho, Chiyoda-ku, Tokyo 101-8449, Japan, Tel: +81.3.3219.3641, Fax: 81.3.3219.3628; Kimie Takemura, Email: takemurakimie@ics-inc.co.jp; Manami Konishi, E-mail: konishimanami@ics-inc.co.jp; Masaki Mori, E-mail: masaki.mori@

Brazil

Grupo Expetro/Smartpetro, Att: Jean-Paul Prates and Bernardo Grunewald, Directors, Ave. Erasmo Braga 22710th and 11th floors Rio de Janeiro RJ 20024-900 Brazil; Tel: 55.21.3084.5384, Fax: 55.21.2533.4593; E-mail: jpprates@ pennwell.com.br and bernardo@pennwell.com.br

Singapore/Australia/Asia-Pacific

Michael Yee, 19 Tanglin Road #09-07, Tanglin Shopping Center, Singapore 247909, Republic of Singapore; Tel: 65 6737.2356, Fax: 65.6734.0655; E-mail: yfyee@singnet. com.sg

Rajan Sharma, Interads Limited, 2, Padmini Enclave, Hauz Khas, New Delhi-110 016, India; Tel: +91.11. 6283018/19, Fax: +91.11.6228 928; E-mail: rajan@ interadsindia.com

Paolo Silvera, Viale Monza, 24 20127 MILANO Italy; Tel:+02.28.46 716; E-mail: info@silvera.it

www.airfrance.com/us

Baker Hughes Incorporated.....Back Cover www.bakerhughes.com www.bcck.com

www.capstoneturbine.com Ceradyne, Inc. 15 www.ceradyne.com

Europipe GmbH......9 www.europipe.com

PennEnergy Equipment......59 www.pennenergyequipment.com PennWell Corporation Deepwater Operations C&E......29 www.deepwateroperations.com DOT Monaco......Inside Back Cover www.deepoffshoretechnology.com Offshore Middle East 200943 www.offshoremiddleeast.com OGJ Online Reasearch Center......47 www.ogjresearch.com OGMT Middle East 201053 www.oilandgasmaintenance.com PennEnergyJOBS......35 www.pennenergyjobs.com Unconventional Gas International 40a www.unconventionalgas.net

SAICInside Front Cover www.saic.com/monster Scott Health & Safety17 www.scotthealthsafety.com www.spe.org/join

Victory Energy Operations, LLC.15 www.victoryenergy.com

www.iri-oiltool.com

www.miswaco.com

World Energy Congress 201065 www.wecmontreal2010.ca World Gas Conference25 www.wgc2009.com

This index is provided as a service. The publisher does not assume any liability for errors or omission.

Oil & Gas Journal / Sept. 28, 2009

From the Subscribers Only area of

OIL&GAS JOURNAL

www.ogjonline.com

RIK management, not concept, led to program's demise

If the US government can't manage oil and gas royalties taken in kind, how can anyone expect it to handle a shady market for greenhouse-gas emission credits?

Interior Sec. Ken Salazar plans to kill the federal royalty-in-kind (RIK) program. A leasing reform bill in the House would do the same thing. That's bad news for oil and gas producers, for whom the program offers a clear advantage: It precludes fights

The Editor's Perspective

by BobTippee, Editor

over valuation. When the government takes its royalty in kind, few questions can arise over sticky issues such as valuation points and price proxies.

With RIK, the government receives its share of production and either sells or stores it. What can be simpler? With government, nothing's simple. Since its evolution from pilot programs in the late 1990s, the modern RIK program has never worked without doubts about management.

In 1996, Johnnie Burton, then director of the Minerals Management Service, requested an internal investigation of the RIK program, which MMS administers.

Results weren't cheery. The investigation uncovered weak controls and misbehavior by MMS employees. MMS's reputation suffered.

Now a Government Accountability Office study says MMS may be collecting too little royalty because of accounting lapses.

That the RIK program has problems is clear. But legitimacy of the concept isn't one of them. The decision to scrap the whole program is, therefore, regrettable. It will replace administrative problems at MMS with valuation disputes, which inevitably arise between leaseholders and royalty owners. When the royalty owner is the US government, those disputes become political. Oil and gas producers shouldn't welcome the change.

The decision, moreover, implies not only that the RIK program is broken but also that it can't be fixed. It says the government can't manage it.

Yet Congress soon might place a comparable mechanism in charge of a nebulous market for emissions credits. Instead of physical quantities of oil and gas at known locations, transactions under the proposed cap-and-trade system would involve rights to emit greenhouse gas worldwide. Values would depend largely on government decisions.

Against the politically charged complexity of that program, RIK administration would look like managerial child's play.

(Online Sept. 18, 2009; author's e-mail: bobt@ogjonline.com)

Market Journal

by Sam Fletcher, Senior Writer

Deloitte: Trade problems loom

Position limits being considered by the US Commodity Futures Trading Commission to eliminate "excessive" market speculation could create problems for companies trading energy commodities, said John England, managing partner for energy in Deloitte & Touche LLP's markets consulting practice. Proposed regulatory changes would affect hedge funds, banks, insurance, and other firms, said England. "It is important for most energy market participants to consider the potential impacts of these proposed rule changes on their ability to manage risk," he said.

To centrally regulate the OTC market, all transactions would be through monitored clearing exchanges. "Although it is expected that the exchanges would adapt by offering a greater variety of OTC products, it is unlikely that the products would cover all possible trading locations, product specs, and time frames," England said. "This could cause a decrease in the variety of instruments available today for laying off basis risk and may decrease the trading activity in high-risk, high-margin markets." He added, "If nonphysical transacting entities are limited in the volume of derivatives they can trade, the demand for these instruments may become low enough that it would not make economic sense for the exchanges to offer a wide variety, thus further limiting the ways that companies can manage or mitigate their basis risk."

England noted, "Typically in commodity markets, a decrease in liquidity results in higher bid-offer spreads and potentially higher costs to hedge in the market. This could have a large impact on both market participants (potentially unable to hedge adequately) and exchanges, as roughly one quarter of their revenue is derived from energy trading." A decrease in the variety of products offered in the US market could trigger a shift to other global exchanges and increase exposure to foreign currency and foreign governments, he said.

"The proposed rules could lead to an increase in margin call activity for derivatives normally traded directly with counterparties or through a broker on credit terms. Forcing transactions to clear on a more transparent clearing exchange rather than through OTC means would result in more cash being required to support deals and less ability to rely on credit," England said.

Problems in laying off risk could make it more onerous to value positions and risk exposure at less-liquid points. "In short, it could become much more difficult to price a large number of physical markets," said England.

Increased red tape

Information requirements and disclosure expectations are likely to be more frequent and more detailed under the new regulations. "Since the content of the reporting would come directly from existing trading systems where their financial positions are maintained, companies will need to determine whether these systems are reliable and support regular reporting," England said. "In some instances, these activities could lead to the need for significant investments in infrastructure (processes and systems), increasing costs and potentially squeezing razor-thin profit margins."

He said, "Should the proposed rules come into force, there is a high probability that the reporting requirements and expectations regarding transparency would rise in lockstep. Institutions transacting energy contracts on US exchanges would have to report to the CFTC on volumes in addition to the standards they are currently meeting. Regulatory oversight could expand into areas beyond the regulation of markets by treading into the regulation of speculative behavior, price movement, and price volatility. With an increase in reporting, this would heighten the risk of misreporting and subject entities to potential fines."

Regulators in both the US and UK are working to share information so as to more effectively track global market manipulation. If the US passes legislation to centralize regulation, it may also pursue an international agreement for regulatory standards in the major global markets, increasing the impact and reach of regula-

However, England said the global nature of energy markets makes it difficult for the CFTC to manage position limits. To be effective, the majority of exchanges worldwide would have to employ similar restrictions. If regulators and the International Organization of Securities Commissions are unable to spearhead a global response, "commercial transactions will naturally migrate to less onerous markets, again drying liquidity and potentially increasing transactional risk," he said.

(Online Sept. 21, 2009; author's e-mail: samf@ogjonline.com)

Oil & Gas Journal / Sept. 28, 2009

MONACO | NOVEMBER 2009

3-5 November 2009 | Grimaldi Forum Monaco | Monte Carlo, Monaco

REGISTER BEFORE 30 SEPTEMBER & SAVE \$100

CAN YOU AFFORD TO MISS THE INDUSTRY'S MOST IMPORTANT DEEPWATER EVENT?

REGISTER ONLINE TODAY AT WWW.DEEPOFFSHORETECHNOLOGY.COM

DOT International is the largest, most prestigious exhibition and conference on deepwater technology. As the industry's premiere event, DOT International thrives on providing attendees with up to date information and key industry developments.

- A unique gathering of the world's leading executives, managers, and engineers from major and independent E&P companies.
- Original reports on the current and future state of technology in this frontier environment delivered by key personnel involved in groundbreaking projects.
- A renewed focus on deepwater technology and equipment, views at the strategic level with case studies and reports on application technologies.
- Geopolitical and economic evaluations of the future of deepwater around the globe with input from major, independent, and state-owned operators and producers.

To register and for more information, log on to www.deepoffshoretechnology.com

Extended reach. Precise placement.

Objective: Geosteer highly complex, extended reach, lateral branch along ultra-thin oil

column to 23,720 ft (7,230 m), including a flat 135° azimuthal turn at horizontal,

precisely navigating relative to the oil-water contact.

Environment: Sognefjord sandstone with hard calcite stringers, Troll Field, North Sea.

INTEQ AutoTrak™ X-treme™ RCLS with integrated MWD/LWD and Technology:

CoPilot[™] real-time drilling optimization.

Answers: Increased recoverable reserves by accessing complex oil reservoir

> while precisely navigating 15,984 ft (4,872 m) horizontal step out within 18 inches of oil-water contact for a measured depth of 4.5 miles,

delivering 100% ROP improvement.

Read the full case history and find out more about how the AutoTrak service can advance your reservoir performance at www.bakerhughes.com/autotrak.

unconventional gas redefining **SUCCESS**

call for abstracts

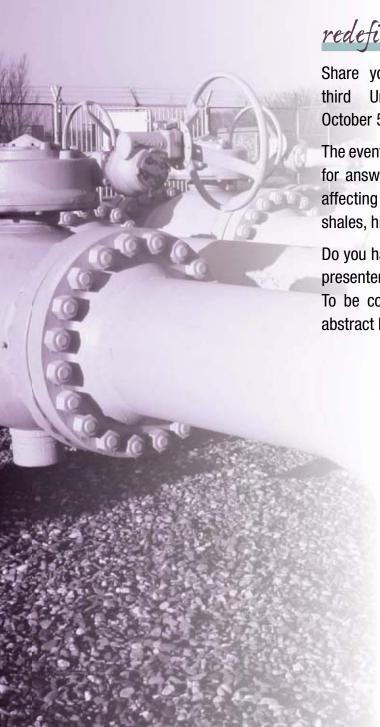
Deadline: February 12, 2010

October 5-7, 2010 Fort Worth Convention Center Fort Worth, Texas USA www.unconventionalgas.net

Owned & Produced By:

Flagship Media Sponsors:

Oil, Gas & Petrochem


Offshore PennEnergy.

redefining success

Share your expertise with a top-level audience at the Unconventional Gas Conference & **Exhibition** October 5-7, 2010, in Fort Worth, Texas.

The event attracts producing-industry decision-makers eager for answers to technical, market, and regulatory questions affecting the development of high-potential gas resources in shales, high-permeability sands, and coalbeds.

Do you have insights valuable to an audience like that? Be a presenter at the Unconventional Gas Conference & Exhibition. To be considered for a place on the program, submit an abstract by February 12, 2010.

advisory board

Guntis Moritis Oil & Gas Journal **Thomas Muchard** El Paso Corporation **Kent Perry RPSEA** Alan Petzet Oil & Gas Journal Bill Powell Schlumberger (retired) **Scott Reeves** BG Group **George Pollock** Baker Energy **Catalin Teodoriu** *Texas A&M University* **Bob Tippee** Oil & Gas Journal John Wessels Quintana Energy Partners, L.P. **Glenda Wylie** Halliburton

ABSTRACT DEADLINE: FEBRUARY 12, 2010

information for presenters

- Presentations should be in English and last no more than 20 minutes. A 10-minute discussion will follow each presentation.
- 2. The Advisory Board of the Unconventional Gas International Conference will select presentations based on the abstracts submitted.
- 3. Presentations should be original and noncommercial. They should address technical, business, and regulatory subjects important to industry professionals engaged in unconventional gas operations.
- 4. Submitters of accepted abstracts will be notified by the end of March 2010. They will receive full instructions on preparation of full presentations.
- Presenters receive complimentary registration as delegates to the conference and exhibition. Other expenses, such as travel, lodging, and food, are the responsibilities of presenters.

to submit abstracts

Submit abstracts online at www.unconventionalgas.net.

Please use the web form, which requests:

- Presentation title.
- Names and affiliation of presentation authors, with the speaker clearly identified.
- A 150-200 word summary that shows how the presentation will appeal to executives, managers, engineers, and other operational decision-makers in the unconventional gas industry.

focus areas

- Regulatory Concerns
- Recovery Methods
- Coal Bed Methane
- Tight Sands
- Field Development
- Frontier Areas
- Sustainablity Issues
- Completion Technologies
- Reservoir Management
- Well Control
- Drilling Methods
- Field Geology
- Workforce and Demographics
- Shales
- Market Dynamics
- Field Economics
- Transportation and Logistics
- Risk and Reliability
- Technology Qualification and Implementation
- Project Execution and Management

October 5-7, 2010 Fort Worth Convention Center Fort Worth, Texas USA www.unconventionalgas.net

1421 South Sheridan Road | Tulsa, OK 74112

Source Code: UGI10CfA1

October 5-7, 2010 Fort Worth Convention Center Fort Worth, Texas USA www.unconventionalgas.net

conference management

For Event Information:

Bob Tippee

Conferences Director Phone: +1 713 963 6242 Fax: +1 713 963 6285 Email: bobt@oqjonline.com

Kris Loethen

Conference Manager Phone: +1 713 963 6202 Email: krisl@pennwell.com

Emily Gotwals

Event Operations Manager Phone: +1 918 832 9205 Fax: +1 918 831 9729 Email: emilyg@pennwell.com

Exhibitor and Sponsorship Sales:

Peter D. Cantu

Phone: +1 713 963 6213 Fax: +1 713 963 6212 Email: peterc@pennwell.com

Kristin Stavinoha

Phone: +1 713 963 6283 Fax: +1 713 963 6212 Email: kristins@pennwell.com

Registration Department:

Direct: +1 918 831 9160 Fax: +1 918 831 9161 Toll Free: +1 888 299 8016 Toll Free Fax: +1 888 299 8057

PennWell Corporate Headquarters:

1421 S. Sheridan Road Tulsa, OK 74112 USA Phone: +1 918 835 3161; Toll Free: +1 800 331 4463 Fax: +1 713 963 6270

